Уголь – это органическое вещество, которое образовалось из растительных остатков. Под воздействием давления и температур залежи торфа на протяжении целых веков превращались в породу. Сначала — в бурый уголь, затем — в каменный уголь, который трансформировался в антрацит.
На каждой стадии уголь меняет свои характерные свойства, которые напрямую влияют на его качество. В чём принципиальные отличия каждого вида?
Бурый уголь
Бурый уголь — самая молодая твёрдая горная порода, которая образовалась около 50 млн лет назад из торфа или лигнита. По своей сути, это «недозревший» каменный уголь.
Это полезное ископаемое получило своё название из-за цвета – оттенки варьируются от буро-рыжего до чёрного. Бурый уголь считается топливом низкой степени углефикации (метаморфизма). Он содержит в себе от 50% углерода, но также много летучих веществ, минеральных примесей и влаги, поэтому гораздо легче горит и даёт больше дыма и запаха гари.
В зависимости от влажности, бурый уголь делят на марки 1Б (влажность более 40%), 2Б (30-40%) и 3Б (до 30%). Выход летучих веществ у бурых углей составляет до 50%.
При продолжительном контакте с воздухом бурый уголь имеет свойство терять структуру и растрескиваться. Среди всех видов угля он считается самым некачественным топливом, так как выделяет куда меньше тепла: теплота сгорания составляет всего 4000 — 5500 ккал\кг.
Бурый уголь залегает на небольших глубинах (до 1 км), поэтому его гораздо легче и дешевле добывать. Однако в России как топливо он применяется намного реже, чем каменный уголь. Из-за низкой стоимости бурому углю всё же отдают предпочтение некоторые мелкие и частные котельные и ТЭЦ.
В России крупнейшие месторождения бурого угля располагаются в Канско-Ачинском бассейне (Красноярский край). В целом участок обладает запасами почти в 640 млрд т (около 140 млрд т пригодны для разработки открытыми способом).
Богато запасами бурого угля и единственное угольное месторождение в Алтае – Солтонское. Его прогнозируемые запасы составляют 250 млн т.
Около 2 трлн т бурого угля таит в себе Ленский угольный бассейн, расположенный на территории Якутии и Красноярского края. Кроме того, этот вид полезного ископаемого нередко залегает вместе с каменным углём – так, его также получают на месторождениях Минусинского и Кузнецкого угольных бассейнов.
Справочная информация
Общие сведения
Ископаемый уголь — твердая горючая органическая порода, образовавшаяся преимущественно из отмерших растений в результате их биохимических, физико-химических и физических изменении. Основные компоненты: органическое вещество-носитель горючих и других технологических свойств угля, минеральные включения и влага.
Изменение органического вещества (ОВ) угля в недрах приводит к созданию соединений, обеспечивающих жизнедеятельность растительных организмов, превращает ОВ в вещества стойкие в ископаемом состоянии.
Вce многообразие состава и свойств угля обусловлено составом исходного материала и неодинаковым влиянием комплекса геолого-генетических факторов на особенности накопления и последующего преобразования исходной биомассы.
В зависимости от состава исходного вещества угли подразделяются на гумусовые, гумусово-сапропелевые и сапропелевые.
Гумусовые угли (гумолиты) образовались преимущественно из продукта превращения отмерших высших растений: целлюлозы, лигнита, хемицеллюлозы, протеинов, жиров, смол. Продукты превращения отмерших низших растений и простейших животных в анаэробных условиях являлись основой для образования сапропелевых углей ((сапропелитов). Если содержание целлюлозно-лигнинового комплекса в высших растениях достигает более 80%, то в низших растениях, например водорослях, лигнин практически отсутствует, а содержание целлюлозы не превышает 20%. Преобладающие вещества в них — протеины, жиры, воски, смолы. Наибольшее распространение имеют гумусовые yгли.
В зависимости от характера и степени преобразованности OB угли в соответствии с принятой в Российской Федерации традацией подразделяются на три группы: бурый, каменныйй и антрацит.
Бурый уголь — уголь низкой стадии метаморфизма с показателями отражения bитринита (гуминита) менее 0,6% при условии, что высшая теплота сгорания на влажное беззольное состояние угля составляет менее 24 МДж/кг. Различают мягкие и плотные разновидности бурых углей.
Мягкий бурый уголь — землистый, листоватый, реже массивный и плотный, матовый и полуматовый, палевого, бурого, коричневого цвета. Его влажность изменяется в пределах 40-60%. содержание углерода в органическом веществе 63-73%.
Плотный бурый уголь — однородный или полосчатый, штриховатый полуматовый и матовый, полублестящий и блестящий коричневого или черного с коричневым оттенком цвета. В куске уголь часто имеет характерный раковистый, занозистый иногда ровный излом. По сравнению с каменным бурый уголь обладает менее плотным сложением, содержит в органическом веществе меньшее количество углерода, но большее количество кислорода и характеризуется высоким выходом летучих веществ. Содержание влаги колеблется от 19 до 44,5%.
На воздухе бурый уголь быстро теряет свободную влагу и растрескивается. В его ОВ преобладают гуминовые вещества с кислотными свойствами и высокой гидрофильностью. При обработке щелочами выход гуминовых кислот достигает 88% в мягких и снижается до 2% — в наиболее плотных разновидностях. При сухой перегонке без доступа воздуха выделяется много летучих веществ (33-60%). Выход первичного дегтя изменяется от нескольких до 25% и более. Низшая теплота сгорания Qir
колеблется от 7 до 17 МДж/кг, высшая (
Qsdaf
) — сухого беззольного топлива достигает 29 МДж/кг. Цвет черты на неглазурованной фарфоровой пластинке колеблется от бурого до черного (плотные разновидности).
Каменный уголь
образуется на средней стадии метаморфизма с показателем отражения витринита от 0,4 до 2,59% при условии, что высшая теплота сгорания (на влажное беззольное состояние угля) равна или выше 24 МДж/кг, а выход летучих веществ (на сухое беззольное состояние угля) равен 8% и более. По сравнению с бурым каменный уголь характеризуется большей степенью карбонизации (содержание углерода достигает 92%), как правило, отсутствием гуминовых кислот. Выход летучих веществ колеблется в пределах 8-50%. Органическое вещество угля при нагреве без доступа воздуха в большей или меньшей степени спекается.
Свойство спекания — важнейшее
при оценке пригодности угля для производства кокса.
Антрацит относится к углям высокой стадии метаморфизма с показателем отражения витринита более 2,59% при условии, чго выход летучих веществ (на сухое беззольное состояние угля) не менее 9%. При выходе летучих веществ менее 8% к антрацитам относят также уголь с показателем отражения витринита от 2,20 до 2,59% (классы 22-25). Антрацит — плотный уголь серовато-черного или черно-серого цвета с металловидным блеском, раковистым изломом. Характеризуется высокой плотностью (1,42-1,8 г/см ), низким удельным электросопротивлением (10-3-10 Ом-м), высокой микротвердостью (300-1470 у.е.). Антрацит имеет низкий выход летучих веществ: от 1,5 до 9,0%, вследствие чего его пламя сравнительно бездымное. Он содержит мало влаги, в элементном составе наблюдается пониженное содержание кислорода и водорода.
Общие геологические запасы углей, содержащиеся в угленосных формациях всех геологических систем, составляют около 14000 млрд. т. Они сосредоточены в следующих странах (в млрд. т): Российской Федерации — 4731,9 (бывший СССР — 6800), США — 3600, КНР — 1500, Австралии — 697, Канаде — 547, ФРГ — 287, ЮАР — 206, Великобритании — 189, Польше — 174, Индии — 125.
Области применения
Используется в основном в энергетике и для получения кокса, в меньшей степени — для газификации и полукоксования, получения облагороженного топлива (газа и жидких продуктов) для бытовых нужд, на транспорте, в кирпичном производстве, обжиге извести и других областях.
В сравнительно небольших объемах уголь применяется для специальных технологических целей: производства термоантрацита и термографита, углеграфитовых изделий, yгледородных адсорбентов, карбидов кремния и кальция, углещелочных реагентов, горного воска.
Направление использования различных технологических марок, групп и подгрупп приведено в табл. 1.
На уголь приходится около 35% мирового потребления энергоресурсов. В 2007 г. в России около 28% добытых углей использовалось в энергетических целях, 22,8 — для производства кокса, 25,6 — в других отраслях промышленности, 23,8% — для бытовых нужд.
Бурый уголь — не только энергетическое топливо, но и ценное сырье для технологической переработки. Буроугольный кокс используется для замены мсталлургического кокса при получении ферросплавов, фосфора, карбида кальция. Большое значение имеют полученные на базе бурых углей гранулированные адсорбенты, полукокс. Разработаны процессы гидрогенизации бурых углей, новые методы их газификации и производства химических продуктов. Бурые угли технологической группы 1Б — сырье для получения горного воска, используемого в бумажной, текстильной, кожевенной, деревообрабатывающей промышленности, дорожном строительстве.
Таблица 1.
Направление использования упей различных технологических марок, групп и подгрупп
Направление использования | Марки, группы и подгруппы |
1. Технологическое | |
1.1. Слоевое коксование | Все группы и подгруппы марок: ДГ, Г, ГЖО, ГЖ, Ж, КЖ, К, КО, КСН, КС, ОС, ТС, СС |
1.2. Специальные процессы подготовки к коксованию | Все угли, используемые для слоевого коксования, а также марки Т и Д (подгруппа ДВ) |
1.3. Производство генераторного газа в газогенераторах стационарного типа: | |
смешанного газа | Марки КС, СС, группы: ЗБ, 1ГЖО, подгруппы — ДГФ, ТСВ, 1ТВ |
водяного газа | Группа 2Т, а также антрациты |
1.4. Производство синтетического жидкого топлива | Марка ГЖ, группы: 1Б, 2Г, подгруппы — 2БВ, ЗБВ, ДВ, ДГВ, 1ГВ |
1.5. Полукоксование | Марка ДГ, группы: 1Б,1Г,подгруппы — 2БВ, ЗБВ, ДВ |
1.6. Производство углеродистого наполнителя (термоантрацита) для электродных изделий и литейного кокса | Группы 2Л, ЗА, подгруппы — 2ТФ и 1АФ |
1.7. Производство карбида кальция, электрокорунда | Все антрациты, а также подгруппа 2ТФ |
2. Энергетическое | |
2.1. Пылевидное и слоевое сжигание в стационарных котельных установках | Вес бурые угли и атрациты.а также неиспользуемые для коксования каменные угли. Для факельно-слоевого сжигания антрациты не используются |
2.2. Сжигание в отражательных печах | Марка ДГ, i руппы — 1Г, 1СС, 2СС |
2.3. Сжигание в подвижных теплоустановках и использование для коммунальных и бытовых нужд | Марки Д, ДГ, Г, СС, Т, А, бурые yгли, антрациты и неиспользуемые для коксования каменные угли |
3. Производство строительных материалов | |
3.1. Известь | Марки Д, ДГ, СС, А, группы 2Б и ЗБ; неиспользуемые для коксования марки ГЖ, К и группы 2Г, 2Ж |
3.2. Цемент | Марки Б, ДГ, СС, ТС, Т, Л, подгруппа ДВ и неиспользуемые для коксования марки КС, КСН, группы 27, 1ГЖО |
3.3. Кирпич | Неиспользуемые для коксования угли |
4. Прочие производства | |
4.1. Углеродные адсорбенты | Подгруппы: ДВ, 1ГВ, 1ГЖОВ, 2ГЖОВ |
4.2. Активные угли | Группа ЗСС, подгруппа 2ТФ |
4.3. Агломерация руд | Подгруппы: 2ТФ, 1АВ, 1АФ, 2АВ, ЗАВ |
Полукоксы бурых углей применяются как наполнители пластмасс, различных композиционных материалов, в качестве сорбентов, ионнообменников, катализаторов. Из углей технологических групп 2Б и ЗБ получают термоуголь.
Более 80% каменноугольного кокса идет для выплавки чугуна. Другие продукты коксования, газ, смола используются в химической промышленности (35%), цветной металлургии (30%), сельском хозяйстве (23%), строительной индустрии, железнодорожном транспорте, дорожном строительстве (12%). Из продуктов коксования получают около 190 наименований химических веществ. Около 90% изготавливаемого волокна, 60 — пластмасс, 30 — синтетического каучука производится на основе соединений, получаемых при переработке каменного угля. Коксохимическая промышленность — основной поставщик бензола, толуола, ксилола, высококипящих ароматических, циклических, азот- и серосодержащих соединений, фенолов, непредельных соединений, нафталина, антрацена.
Каменноугольный пек применяется для получения пекового кокса, который используется как составная часть электродов в алюминиевой промышленности, а также в производстве углеродных волокон, технического углерода.
Высокая электропроводность, сравнительная устойчивость к процессам окисления, повышенная устойчивость к воздействию агрессивных сред и истиранию определяют широкий диапазон использования антрацита в различных отраслях. Он является высокосортным топливом, а также исходным сырьем для получения термоантрацита, термографита, карбонизаторов, карбюризаторов, карбидов кальция и кремния, электродов для металлургической промышленности, углеродных адсорбентов, коллоидно-графитовых препаратов.
Состав угля
Основные слагающие угля — это органические компоненты и минеральные включения. Органические компоненты, различаемые под микроскопом, с характерными морфологическими признаками, цветом и показателем отражения именуются микрокомпонентами (мацералами).
В отличие от минералов они не имеют характерной кристаллической формы и постоянного химического состава. Химические и физические свойства микрокомпонентов изменяются в процессе углефикации.
Выделяют четыре группы микрокомпонентов: витринига, семивитринита, инертинита и липтинита.
Микрокомпоненты группы витринита
характеризуются преимущественно ровной поверхностью, серым цветом различных оттенков в отраженном свете, слабо выраженным микрорельефом и способностью при определенной степени углефикации переходить в пластическое состояние. Показатель отражения колеблется от 0,4 до 4,5%. Микротвердость в зависимости от углефикации и генетических факторов находится в пределах от 200 до 350 МПа.
Микрокомпоненты группы семивитринита
по физическим и химическим свойствам занимают промежуточное положение между микрокомпонентами групп витрипита и инертинита. Они характеризуются беловато-серым цветом различных оттенков в отраженном свете, отсутствием микрорельефа. Их показатель отражения всегда превышает значения показателя отражения витринита. Микротвердость колеблется в пределах от 250 до 420 МПа. В процессах коксования микрокомпоненты этой группы нс переходят в пластическое состояние, но способны размягчаться.
Микрокомпоненты группы инертинита
характеризуются высоким показателем отражения, резко выраженным микрорельефом. Цвет изменяется от белого до желтого. Микротвердость колеблется от 500 до 2300 МПа. Микрокомпоненты этой группы не переходят в пластическое состояние и не спекаются.
Микрокомпоненты группы липтинита
различаются между собой по морфологическим признакам. Цвет липтинита изменяется от темно-коричневого, черного до темно-серого и серого. Показатель отражения у этой группы самый низкий: от 0,21 до 1,59%. Мнкротвердость колеблется oт 80 до 250 МПа. При коксовании микрокомноненты этой группы образуют более подвижную пластическую массу по сравнению с витринитом.
Минеральные включения в углях — глинистые минералы, сульфиды железа, карбонаты, оксиды кремния и другие.
Глинистые минералы в среднем составляют примерно 60-80% общего количества минеральных веществ, ассоциирующих с углем. Чаще всего они представлены иллитом, серицитом, монт-мориллонитом, каолинитом. Реже отмечается галлуазит.
Глинистые минералы сложены из частиц размерами до 100 мкм. Встречаются в виде линз, прослоек или тонко рассеянных частиц в витрините. Нередко выполняют полости в компонентах с ботанической структурой или замещают их отдельные участки. В угольных пластах иногда содержатся прослои тонштейнов, в которых главным породообразующим минералом является каолинит.
Из сульфидов железа наиболее характерны пирит, марказит и мельниковит. Форма их нахождения в пластах различна и определяется условиями образования. Сингенетичные образования встречаются в виде отдельных зерен, псевдоморфоз по растительным остаткам, конкреций, прослойков. Эпигенетические сульфиды, как правило, выполняют трещины.
Карбонаты представлены кальцитом, сидеритом, доломитом, анкеритом. Кальцит часто образует тонкие прослойки либо заполняет трещины в угле. Сидерит встречается в виде округлых или овальных образований (оолитов) или заполняет полости растительных фрагментов.
Оксиды кремния представлены в углях кварцем, халцедоном, опалом и другими минералами.
Кварц встречается в виде небольших прослоек, округлых и yi ловатых зерен, иногда образует довольно крупные линзы. Халцедон встречается сравнительно реже, обычно совместно с кварцем. В зонах выветривания угля некоторых бассейнов отмечается гипс, заполняющий трещины, реже — в виде конкреций.
Прочие минеральные включения представляют в основном гидрооксиды железа, фосфаты, полевые шпаты, соли.
Использование углей в энергетике.
Для сжигания могут применяться угли всех марок и сортов. Основные показатели качества энергетических углей — рабочая и гигроскопическая влага, зольность, выход летучих веществ, содержание серы, ситовой состав, низшая теплота сгорания рабочего топлива, состав и плавкость золы. Для слоевого сжигания регламентируются также показатели механической прочности и термической стойкости углей, для пылеугольного — размолоспособности.
Требования промышленности к энергетическим углям регламентированы государственными стандартами, ограничивающими предельную влажность, зольность, размер кусков, содержание породы.
Слоевое сжигание
предъявляет наиболее жесткие требования к топливу. Важнейшие характеристики — ситовой состав, спекаемость, зольность, выход летучих веществ, реакционная способность и термическая способность топлива. Содержание в углях как мелочи, так и крупных кусков — нежелательно. Для стандартных слоевых топок наиболее применимы куски топлива следующих размеров: 6-12 мм (бурые угли), 12-25 и 25-50 мм ( каменные угли).
Факельно-слоевое сжигание
предъявляет менее жесткие требования к ситовому составу топлива. Для топок этого типа поставляются отсевы, рядовые угли и угли размером 0-25, 0-50 мм.
Пылеугольный способ сжигания
— основной в крупной энергетике и позволяет сжигать топливо с зольностью до 45% и в влажностью до 55%. Топливо при пылеугольном сжигании предварительно размалывается и подсушивается (для высоковлажных углей). Повышенные требования к стабильности cocтавa угля, составу и свойствам золы, размолоспособности топлива.
Жесткие требования по изученности состава и свойств золы предъявляются к углям с легкоплавкими золами, сжигаемым в топках с жидким шлакоудалением. Для пылевидного сжигания поставляются рядовые угли, промпродукты и отсевы всех марок, не пригодные для коксования и других специальных целей. Ограничивается величина сернистости углей. Возможности использования высокосернистых углей в основном лимитируются содержанием вредных газов и зольности, расходом топлива, высотой дымовых труб, возможностью выделения санитарно-защитных зон.
Угли для цементных печей.
Требования к углям, предназначенным для цементных печей, нормируют содержание золы, влаги, выход летучих веществ, толщину пластического слоя, теплоту сгорания, кусковатость, содержание мелочи и минеральных примесей.
Угли для известковых печей.
Требования к этим углям предусматривают ограничения по зольности, влаге, кусковатости, содержанию мелочи, марочному составу.
Угли для обжига кирпича.
В углях для кирпичного производства нормируются зольность, влага, толщина пластического слоя, теплота сгорания, выход летучих, кусковатость, содержание мелочи и минеральных примесей.
Угли для коммунальных нужд.
Требования к этим углям определяют марочный состав и группы углей, выход летучих веществ, толщину пластического слоя, теплоту сгорания, влажность, кусковатость, содержание мелочи и минеральных примесей.
Испытание качества углей
Все показаюли состава и свойств угля и их качественные характеристики имеют условные обозначения в виде буквенных символов и индексов.
Анализируемые состояния угля: рабочее (г), аналитическое (а), сухое (d).
Условные состояния угля: сухое бсззольное (daf), влажное беззольное (af), органической массы (о).
Все свойства и параметры, характеризующие качество углей, определяются в соответствии с нормативно-методическими документами, перечень которых приведен в приложении.
В каждом рабочем пласте макроскопически выделяются литотипы угля и определяется усредненный микрокомнонентный cocтав выделяемых литотипов и пласта в целом.
Гранулометрический состав
— количественная характеристика угля по размеру кусков — нормируется для всех видов использования. Разделение угля на классы крупности производится путем его сортировки (грохочения) на ситах с отверстиями соответствующих размеров.
Механическая прочность
углей изучается по двум параметрам: способность угля сохранять размеры кусков при ударе и при истирании. Она необходима при использовании углей для газификации, получении термоантрацитов, в электродном и литейном произволствах.
Термическая прочность
угля характеризуется механической прочностью в кусках после термической обработки. Она исследуется в углях, предназначенных для сжигания в топках транспортных средств, полукоксования, гидрирования и получения литейных электродных тсрмоантрацигов.
Электрические свойства
служат для оценки стадий метаморфизма: угли на низких стадиях являются диэлектриками, на средних — полупроводниками, на высоких (антрациты) — проводниками.
Плотность углей
характеризует его пористость. В естественном состоянии извлеченный из недр уголь обычно имеет многочисленные трещины и включает поры (пустоты) различной формы и размеров. Различают действительную
(dr)
и кажущуюся
(da),
закрытую и открытую пористость.
Элементный анализ
включает в себя определение содержания в органической массе следующих основных элементов: углерода, водорода, азота, кислорода и органической серы. Поскольку углерод, водород и кислород содержатся в минеральной части углей, входят в cocтав карбонатов, оксидов, а также содержатся в гидратной воде силикатов, различают соответственно содержание этих элементов: общее
(ct, Ht, ot),
в органической массе
(co, Ho, oo)
и в минеральной части углей
(cm, Hm, om)
.
Технический анализ
объединяет определение основных показателей качества угля, предусмотренных требованиями нормативных документов для всех видов их использования. К показaтелям качества угля относятся: влажность, зольность, содержание серы, фосфора, выход летучих веществ, теплота сгорания. В случаях, когда направление использования углей конкретного месторождения определено в достаточной степени, производится сокращенный технический анализ, включающий определения только зольности углей, влажности и выхода летучих веществ.
Зольность
предсчавляет собой отношение (в %) массы неорганического остатка (золы), получаемою после полною сгорания угля, к массе исследуемой пробы угля. Основные компоненты — оксиды
Si, Al, Fe, Са, Mg, Na, К
, подчиненное значение имеют оксиды
Ti, Р, Мn
. Выход и состав золы зависят от природы угля, условий его сжигания (прежде всего от скорости озоления и конечной температуры прокаливания). По составу золы угли подразделяются на кремнистые (
SiO2
40-70%), глиноземные (
А2O3
30-45%), железистые (
Fе2О3
> 20%), известковистые (
СаО —
20-40%).
Влажность подразделяется на поверхностную (влага смачивания), максимальную (Wmax
влагоемкость угля, свойственная его химической природе, петрографическому составу, степени yглефикации), воздушно-сухого угля (представлена адсорбционно связанной водой и характеризует пористость и гидрофильные свойства поверхности частиц угля) и общая (суммарная величина внешней влаги и влаги воздушно-сухого угля).
Сернистость угля.
Массовая доля обшей серы
(Std)
в углях колеблется в широких пределах. По этой величине угли разделяются на низкосернистые (до 1,5%), среднесернистые (1,5-2,5%). сернистые (2,5-4%) и высокосернистые (более 4%). Сера входит в состав органического вещества, минеральной части угля, иногда присутствует в виде элементарной. Выделяют следующие разновидности серы: органическую
(So),
сульфидную
(Ss),
сульфатную
(SSO4).
Содержание фосфора (Р )
в углях обычно не превышает 0,05%. Массовая доля его ограничивается лишь в углях, направляемых на получение специальных сортов доменного кокса (<0,012%), а также в антрацитах, используемых при производстве карбида кальция (<0,05%).
Выход летучих веществ (V)
оцениваеюя при надевании угля без доступа воздуха по разносги разложения на газо- и парообразные продукты и твердый нелетучий складок. Cocтав летучих продуктов представляет собой первичный деготь (для бурых углей) или каменноугольную смолу (для каменных углей). Они состоят из газов
(СО, СО2, H2, CH2)
и летучих yглеводородов и их производных, а тaкжe воды.
Теплота сгорания угля
(Q)
используется для сопоставления теплотехнических свойств углей различных месторождений, марок между собой и с другими видами топлива. Определение теплоты сгорания производится замером количества тепла, выделяемого единицей массы угля при полном сгорании eгo в калориметрической бомбе в cpeде сжатого кислорода в стандартных условиях. Соответвуюшими пересчетами величины теплот сгорания получают значения выешей теплоты сгорания
(Qs)
с исключением тепла, полученного за счет кислотообразования, и низшей
(Qi)
теплоты сгорания с дополнительным исключением тепла, полученною за счет испарения воды.
Термические свойства углей характеризуются спекаемостью и коксуемостью.
Спекаемость
— свойство угля при нагревании без доступа воздуха переходить в пластическое состояние с образованием связанного нелетучсго остатка. Свойство углей спекать инертный материал с образованием такого остатка называется спекающей способностью. При нагреве углей определенного петрографического состава и степени углефикации выше 300°С без доcтупа воздуха из них выделяются napoгазовые и жидкие продукты. При температуре 500-550°С масса затвердевает, образуется спекшийся твердый остаток — полукокс. При дальнейшем увеличении температуры (до 1000 С и более) в полукоксе снижается содержание кислорода, водорода, серы, возрастает содержание углерода. Полукокс переходит в кокс. Спекаемостью обладают каменные угли II-V стадий метаморфизма, определенного петрографического состава.
Коксуемость
— свойство измельченного угля спекаться с последующим образованием кокса с установленной крупностью и прочностью кусков. Изучается прямыми (лабораторное, ящичное и полузаводское коксование) и косвенными методами.
Групповой анализ
чаще всею используется для оценки качества бурых углей, в которых при обработке растворителями или химическими реагентами часть органической массы угля переходит в растворы и некоторые получаемые из экстрактов вещества (битумы, гуминовые кислоты) применяются в различных отраслях народного хозяства. Битумы, извлекаемые из легких бурых углей opганическими растворителями (бензолом, бензином и др.) представлены в основном восками и смолами. Минимальное содержание восксодержащего битума в бурых углях, используемых в промышленности, составляет 7%. Гуминовые кислоты угля — смесь кислых высокомолекулярных аморфных темноокрашенных органических веществ с высокой степенью окисленности и гидрофильностью, извлекаемых из угля водными щелочными растворами. Выход гуминовых кислот из бурых и окисленных каменных углей колеблется от нуля до 100% органической массы.
Микроэлементы
в углях находятся как в органической, так и в минеральной массе. Они представлены соединениями цветных металлов, редких и рассеянных элементов, суммарная концентрация которых обычно не превышает 1% сухой массы угля. Наибольшее практическое значение для извлечения имеют уран и германий. Кроме того, попутно могут извлекаться галлий, ванадий и другие. Для определения содержания в углях «малых» элементов используются спектральный, спектрофотометрический, активационный и атомно-абсорбционный методы.
Приложения
Классификация углей по размеру кусков
(ГОСТ 19242-73)
Классы | Условные обозначения | Пределы крупности кусков | |
нижний | верхний | ||
Сортовые | |||
Плитный | П | 100(80) | 200; 300 |
Крупный (кулак) | К | 50 (40) | 100(80) |
Орех | О | 25 (20) | 50 (40) |
Мелкий | М | 13(10) | 25 (20) |
Семечко | С | 6 (5; | 13(10) |
Штыб | Ш | 0 | 6 (5; |
Совмещённые и отсевы | |||
Крупный с плитным | ПК | 50 (40) | 200; 300 |
Орех с крупным | КО | 25 (20) | 100(80) |
Мелкий с орехом | ОМ | 13(10) | 50 (40) |
Семечко с мелким | МС | 6 (5; | 25 (20) |
Семечко со штыбом | СШ | 0 | 13(10) |
Мелкий с семечком и штыбом | МСШ | 0 | 50 (40) |
Орех с мелким, семечком и штыбом | ОМСШ | 0 | 25(20) |
Рядовой | Р | 0 | 200; 300 |
Термобарические условия Земных недр приведшие к образованию углей тех или иных марок
Марка угля | Индекс | Стадия метаморфизма | Основные параметры | ||
Глубина погружения , (м) | Температура , (°С) | Давление , (атм.) | |||
1 | 2 | 3 | 4 | 5 | 6 |
Бурые (Б): | |||||
I — я группа | 1Б | О1 | 100-200 | 50 | 500 |
2-я группа | 2Б | О2 | 500 | 50 | 750 |
3 — я группа | ЗБ | О3 | 1500 | 50 | 3300 |
Каменные: | |||||
Длиннопламенные | Д | I | 2500 | 90 | 6500 |
Газовые | Г | II | 3500 | 120 | 8750 |
Жирные | Ж | III | 4500 | 150 | 12000 |
Коксовые | К | IV | 5500 | 170 | 13000 |
Отощённо-спекающие | СС | V | 5500 | 180 | 14000 |
Тощие | Т | VI | 6600 | 220 | 17000 |
Антрациты | А | VII-X | 6600 | 220 | 20000 |
Каменный уголь
Куда большую популярность в топливной энергетике имеет каменный уголь. Он намного старше бурого угля – возраст каменных отложений составляет порядка 350 млн лет. Каменный уголь куда более крепкое, твёрдое и тяжёлое полезное ископаемое, которое обычно залегает на глубинах от 2 км.
В этой горной породе чёрного цвета с матовым блеском содержится 75-95% углерода и при этом всего 5-6% влаги. За счёт высокой теплоты сгорания — около 5500-7500 ккал\кг — каменный уголь горит гораздо лучше, чем бурый.
По степени углефикации каменный уголь разделяют на множество разновидностей. Среди марок угля сегодня выделяют длиннопламенный (Д), газовый (Г), жирный (Ж), коксовый жирный (КЖ), коксовый (К), отощённый спекающийся (ОС), тощий (Т) и антрацит (А).
Все подвиды каменного угля отличаются степенью выхода летучих веществ, элементарным составом, теплотой сгорания, объёмным весом и выходом летучих веществ. Например, у каменных углей марок Г и Д выход летучих веществ составляет 30-50%, марок Т – 13%, А – 2-9%.
В тощих углях много углеродов, но мало летучих веществ и битумов. К газовым и жирным относятся угли с большим содержанием летучих веществ. А коксовые угли имеют наибольшую теплоту сгорания – свыше 8 тысяч ккал/кг.
Территория России изобилует количеством каменноугольных бассейнов, рассредоточенных в самых разных регионах. Главные «угольные» точки находятся в Минусинском, Кузнецком, Ленском, Тунгусском, Таймырском, Печорском, Южно-Якутском и Буреинском бассейнах.
Так, на территории Минусинского бассейна залегает около 2,7 млрд т каменного угля. А в Кузнецком угольном бассейне хранится порядка 61,6 млрд т разведанных запасов углей.
Также к крупнейшим месторождениям каменного угля причисляют Эльгинское месторождение в Якутии: его запасы составляют порядка 2,2 млрд т. Ещё одно месторождение – Элегестское (Тува) – обладает запасами в около 20 млрд т.
Другие виды классификаций
Помимо тех марок, что представлены выше, существует и множество промежуточных марок, например коксовый жирный (КЖ), газовый спекающийся (ГС), длиннопламенный газовый (ДГ).
Также уголь каждой марки может иметь разные размеры кусков. В таком случае буква, обозначающая сорт, располагается после буквы, обозначающей марку. Например, антрацит-орех (АО), жирный-плита (ЖП), коксовый семечко (КС).
Существует и классификация угля по происхождению. Весь уголь, как уже было сказано, образуется из растений в течение миллионов лет. Но растения могут иметь разную природу. Так, угли делятся на гумусовые (из древесины, листьев, стеблей) и сапропелитовые (из остатков низших растений, например водорослей).
Антрацит
Наивысшей степенью углефикации обладает антрацит – конечная стадия сформирования угля. Все процессы гниения торфяных отложений завершены, каждый слой горной породы полностью спрессован, поэтому и вещества максимально сконцентрированы.
Антрацит легко отличить от других видов угля благодаря ярко выраженному чёрному цвету с металлическим блеском. Он обладает хорошей электропроводностью, имеет большую вязкость и практически не спекается.
Этот вид угля практически лишён влаги (не более 1-3%) и минеральных примесей, зато содержит много углерода (около 94%). Такие свойства обеспечивают очень высокую удельную теплоту сгорания — 8100-8350 ккал/кг. Выход летучих веществ колеблется от 3 до 4 %.
Чтобы поджечь антрацит, нужно постараться: он загорается только при температурах 600-700˚С, но в случае успеха не даёт дыма и горит почти без пламени (в отдельных случаях вообще без него). Кроме того, продукты сгорания данного топлива не имеют запаха.
В основном антрацит залегает на глубинах 6 км. Это довольно редкое полезное ископаемое: его доля среди мирового запаса угля составляет около 3%.
Россия занимает первое место по запасам антрацитов. Он залегает в следующих угольных бассейнах: Кузнецком, Таймырском, Грушевском, Тунгусском. Также эти полезные ископаемые обнаружены на Урале и в Магаданской области.
Маркировка готовой продукции
Помимо видов угля по цвету, готовому ресурсу присваивают одну из маркировок согласно качеству:
- Категория А — продукт пиролизного процесса твердых пород с предельной массовой долей углерода порядка 90%. Количество минеральных веществ в таком продукте не превышает 2.5%. Это наиболее качественная марка.
- Категория Б — уголь, полученный при пиролизе мягкой и твердой древесины. Содержание углерода в итоговом продукте — 88%.
- Категория В — углежжение всех групп сырья приводит к появлению угольной смеси. Углерода в ней не больше 77%, а минеральных веществ до 4%. Для данной категории нормирование других параметров не предусматривается.
Как определить зольность?
Самой важной характеристикой угля является зольность – процентное содержание негорючего остатка (золы), образуемого из минеральных примесей топлива после его полного сгорания. С учётом зольности разработаны методы оценки эффективности обогащения угля, а также формируются цены на топливо.
Зольность измеряется в процентах от общей массы угля. Чем она выше, тем ниже теплота сгорания и, соответственно, качество угля. Поэтому именно зольность угля определяет его пригодность к использованию в качестве топлива. Так, уголь с 25-процентной зольностью относят к высокосортному, низкосортным считается уголь с показателем от 40%.
Определение зольности угля осуществляется одним стандартным методом: топливо полностью сжигают, потом проводят прокаливание зольного остатка до постоянной массы и непосредственно определяют её долю относительно изначальной массы топлива.
При сгорании углей проходит несколько этапов процесса превращения минеральных компонентов в золу. Все реакции проходят с разной скоростью и в разных температурных условиях. Масса и состав полученной золы разнятся в каждом отдельном озолении, поэтому точно определить зольность каждого вида угля в отдельности невозможно.
То же самое можно сказать и об остальных свойствах каменного, бурого угля или антрацита: они определяются целым рядом факторов, поэтому за основу берутся лишь усреднённые параметры.
Применение древесного угля
Этот вид относят в отдельную группу, его используют уже несколько тысяч лет. Древесину часто добавляют в мангал, она идеально подходит для камина. Органический материал долго горит и дает большое количество тепла. Древесный вид используют в качестве удобрения. Он улучшает состав почвы и насыщает растения ценными веществами. Зола применяется в промышленности, из нее делают качественные составы для агротехнических культур.
Вид часто используют для производства чугуна. Он прочный и очень устойчив к коррозии. Древесина — альтернатива топливу. Ее ценят за экономичность и ценовую доступность.
В промышленных масштабах горючий материал получают из опилок и веток, то есть из отходов. Сырье измельчают, после чего делают брикеты.
Читать так же: брикетирование древесного угля.
Из угля делают брикеты
Особенности хранения угля
Покупать сразу много хорошего топлива нельзя, поскольку длительное складирование приводит к выветриванию, окислению породы, и она теряет свои характеристики. Оптимально закупаться топливом на сезон и хранить его в хорошо проветриваемом и защищенном от влаги, света месте. Температура в отсеке не более +20 С, иначе куски начнут разрыхляться и рассыпаться.
Процесс окисления вызывает самовозгорание породы, что характерно для бурого, мелкофракционного угля. Антрацит практически не воспламеняется, хранится долго и при минусовых показателях на улице сохраняет все параметры теплоэффективности.
Практичнее всего хранить запасы в открытом с одной стороны сарае под крышей. Для сохранения целостности топливо накрыть гигроскопичной мембраной (не пленкой), регулярно проверять на окисление.
Почему уголь плохо горит?
Причин недостаточного горения топлива несколько – маленькая температура, недостаток кислорода, нарушения тяги. Чтобы устранить все нюансы, зольник перед затапливанием очистить, правильно разжечь топку дровами, дождаться набора температуры (дрова хорошо разгорелись и уже не дымят), затем сделать закладку. Первый заброс фракциями до 50 мм, более массивные куски укладываются после рассыпания мелкофракционного топлива.
О плохой тяге свидетельствует выброс дыма наружу, надо открыть заслонку, расчистить зонуф под топочной камерой (там скапливается зола). Кислород к горящему углю поступает не сверху, но снизу, потому всю зону под топкой тщательно очистить.
Нормальная тяга и чистый зольник, но уголь не горит – проблема в большой пыльности топлива. Устранить неприятность рекомендуется смачиванием энергоносителя – немного воды и пыль спрессуется, хорошо и быстро разгорится.
Котел не заработает при плохом качестве угля. Это может быть сниженная калорийность, брикетирование с добавлением торфяного или бурого сорта, уже давно полежавших и утративших свои характеристики. Узнать такой уголь несложно – большие комки быстро разваливаются, на руках остается много пыли. В этом случае поможет покупка некоторого количества качественного ископаемого, чтобы смешать его с некондиционным энергоносителем.
Как правильно считать расход угля
Разобравшись в том, как выбрать уголь для отопления частного дома, рассмотрим объем топлива. Для правильного расчета надо знать показатель утепления, площадь строения, нормативные температуры зимой и тип котла. Объем покупки угля для дома из кирпича самый высокий, в сравнении с деревянными строениями, кирпичные требуют на 35% больше топлива, при условии плохого утепления и суровых зим расход увеличивается на 50%.
Объекты из шлакобетона с толщиной стены в 45 см и площадью в 90 м2 потребляют до 3,5 тонны за сезон, другие строения той же площади – до 8 тонн угля. Расчет приведен для северных регионов, для зон с мягким климатом объем топлива снижается на треть.
Пример: в Новосибирске, Красноярске для дома из дерева площадью в 40 м2 с хорошим утеплением понадобится не менее 6 тонн угля ДПК марки О, К, П – это размер фракций до 10 см, длиннопламенный сорт. При расчетах средней температуры от -30 С, затраты на уголь значительно ниже чем при обустройстве газовой, электрической системы отопления.
В новом доме количество угля выбирается тестированием. Покупается несколько мешков топлива, печь протапливается до нормативных показателей, снимаются замеры периода сгорания, нагрев воздуха в доме с учетом температуры за окном. Нормативный уровень прогрева дома +18 С при +0 С за окном, для расчета нагрева дома при пониженных температурах временной промежуток нагрева умножается на 3. Получается, что если при -5 С дом прогрелся до +18 С за 20 минут, то при -25 С за окном время прогрева увеличится до 60 минут.
Таким образом станет понятно, какие следует выбирать марки каменного угля для бытовых котлов в каждом индивидуальном строении. Стоит знать, что в процессе хранения топливо немного снижает характеристики и показатели, потому покупать первый раз лучше с запасом в 25%. Это позволит не остаться без тепла в период весенних заморозков.
Стандартные показатели расхода энергоносителя для твердотопливных котлов в доме площадью в 100 м2 по сезонам:
- Сентябрь – октябрь. Одно ведро на 12 часов горения с учетом того, что ночная температура в комнате будет +17 С.
- Ноябрь – февраль. До 3,5 ведер в сутки. В пересчете на кг получается до 65 кг в сутки.
- Март — апрель. До 2 ведер в 24 часа, если в апреле температура поднимается до +10 С, хватит одного ведра угля. Снижать объем не рекомендуется для просушивания стен и пола строения.
При расчетах веса ведра с углем в 20 кг, на сезон потребуется до 10 тонн топлива. Это при условии, что строение хорошо утеплено, жильцы не мерзнут при +18 С в ночное время, а днем дом не протапливается со 100% отдачей котла.
Выбирая уголь, обязательно смотреть сертификаты. Купив тощие сорта, хозяин останется без тепла и переморозит всю систему отопления, при условии, что это водяная сеть.
Плюсы и минусы использования природного угля для отопления
Топливо имеет ряд весомых преимуществ:
- Возможность применения в оборудовании разного типа. Уголь для отопления используется в котлах стационарного, переносного типа, применяется для систем парового, водяного отопления.
- Длительность горения. Одной полной закладки хватает на 10 часов, но тут все зависит от объема камеры сгорания.
- Высокий КПД. Теплоотдача даже самого низкосортного угля выше, чем у дров.
- Сравнительно доступная стоимость, удобство транспортировки. Производители предлагают топливо разной фракции, которое можно перемещать навалом (в кузовах), мешках, коробках.
- При обустройстве печи не требуется прокладывать паропроводы и газовые магистрали, не нужно получать разрешение на применение топливных печей.
- Теплоотдача материала высокая, энергия передается в процессе горения фракций и после основного сгорания, поэтому тепло в помещении сохраняется длительное время.
- Для поддержания постоянной температуры теплоносителя не следует все время заполнять топку до отказа, после первой порции хватит небольшого количества энергоносителя, чтобы температура воды и воздуха оставалась комфортной.
- Углем можно обогреть очень большие площади в регионах с самыми суровыми зимами.
Недостатки тоже есть, в частности:
- необходимо формирование дымохода правильной конструкции для образования тяги;
- автоматизировать процесс закладки в частном доме не получится;
- в процессе сгорания выделяется много шлаков, зольник придется регулярно чистить;
- складирование топлива осуществляется в хорошо проветриваемом и сухом помещении.
Для эффективности работы твердотопливного котла рекомендуется подкидывать уголь в топку, разогретую дровами.