Расчёт площади воздуховодов и фасонных изделий: формулы, калькулятор

Залогом безупречной и эффективной работы вентиляции является грамотный расчет площади воздуховодов и фасонных изделий, от которого зависит подбор как отдельных элементов, так и оборудования. Цель расчета — обеспечение оптимальной кратности перемены воздуха в помещениях в соответствии с их назначением.

В статье мы подробно разобрали каждый из обязательных этапов вычислений: определение сечения и фактической площади воздуховодов, расчет скорости воздуха и подбор параметров фасонных изделий. Кроме того, мы обозначили главные требования, предъявляемые к величине вентканалов, а также привели пример расчета воздуховодов для частного дома.

Какие данные нужны для расчёта эксплуатационных характеристик воздуховодов?

Прежде всего, во внимание принимаются основные параметры сооружения, такие как назначение самого здания, объём помещений, количество постоянно пребывающего персонала и посетителей, особенности производственного процесса (для промышленных зданий) и т.п.

Проектирование систем вентиляции осуществляется в соответствии со следующими нормативными документами:

  • СП 60.13330.2016 (актуальная редакция СНиП 41-01-2003);
  • СП 7.13130.2013;
  • ГОСТ 12.1.005-88 и некоторые другие.

Как рассчитать площадь воздуховода различных типов сечений?

Расчёт квадратуры воздуховодов разных сечений имеет свои особенности, так как расход воздуха у них будет значительно отличаться даже при одинаковых параметрах скорости перемещения воздушных масс и площади. Кроме того, при расчёте вентиляционных сетей большой протяжённости и/или разветвленности учитывается влажность и температура воздуха (если она превышает +20°С). А также аэродинамическое сопротивление воздуховодов и фасонных изделий, зависящее от формы и материала изготовления (различные коэффициенты трения). Учёт этих параметров выражается в использовании различных поправочных коэффициентов в расчётных формулах.

Важная информация! Параметры квадратуры канала и скорость перемещения воздушных потоков обратно пропорциональны. То есть, при большом сечении воздуховода для обеспечения необходимого объёма перемещаемого воздуха достаточно меньшей скорости.

Расчёт квадратуры производится по двум параметрам, взятым из нормативов (фактически эти параметры описывают кратность воздухообмена):

  1. расход воздуха – R (м³/час);
  2. скорость воздушного потока – V (м/с).

Формула площади воздуховодов оперирует параметрами расхода воздуха, взятыми из нормативов:

S = R/k × V, где

K – коэффициент, равный 3600.

Существуют альтернативные формулы, оперирующие другими коэффициентами, к примеру:

S = R × 2,778/V.

При использовании воздуховодов большого сечения существенно снижается уровень шума воздушных потоков и затраты электроэнергии на их перемещение. Однако материалоёмкость таких конструкций значительно выше, что увеличивает их первоначальную стоимость.


Круглый воздуховод декоративного типа на подвесных держателях

Значительное влияние на эффективность перемещение воздушных потоков оказывает форма сечения. В прямоугольных воздуховодах воздушный поток получает большее сопротивление. Однако прямоугольная форма более удобна для монтажа, особенно при недостатке места, и может размещаться впритык к основным строительным конструкциям. Круглые воздуховоды имеют лучшую аэродинамичность, но не всегда вписываются в интерьер. А изделия с высокими эстетическими показателями имеют гораздо большую стоимость. Учитывая приведённые факты, в качестве альтернативы рекомендуется обратить внимание на овальные воздуховоды, сочетающее в себе эргономичность и эффективность.


Вентиляционные каналы на предприятии

Как посчитать площадь круглого воздуховода?

Для расчёта диаметра круглого вентканала используется нормативная площадь сечения:

Фактическую площадь получают из формулы:

Как рассчитать площадь воздуховода прямоугольного сечения?

Для прямоугольных коробов используются те же формулы, что и для круглых. Длину сторон вычисляют по формуле:

Dп – диагональ прямоугольника, вписанного в круг (фактически эквивалентный диаметр круга);

a, b – стороны.

Фактическая площадь узнаётся из формулы:

Также для вычисления основных параметров проектировщики используют таблицы.


Таблица основных параметров площади и формы сечений

Расчёт площади овального воздуховода

Диаметры овального воздуховода вычисляются по его площади. Используются следующие формулы:

Диаметр:

Р – периметр окружности овалоида,

Площадь овального воздуховода вычисляется по формуле:

a, b – большой и малый диаметр овала, соответственно.


Овальные воздушные каналы сочетают в себе преимущества прямоугольных и круглых

Видео описание

В этом видео детально рассказывается об эквивалентном диаметре воздуховодов:

Обзор других методик

В сопроводительной документации либо специализированной нормативной литературе можно встретить графические нонограммы. Здесь имеются несколько осей, на которых обозначена шкала для давления, скорости, воздухообмена и поперечного сечения вентканала. Зная первые показатели можно сопоставить их и на пересечении рассмотреть искомый вариант размера контура. Значение будет приблизительным, но на него можно будет ориентироваться с учетом минимального уровня шума.

Инженеры и проектировщики для расчета квадратуры воздуховода используют специальные программы. Здесь имеются громоздкие таблицы, в которых учитывается максимальное количество нюансов. Они связаны как с типов выбранного комплекта для устройства вентиляционной системы, так с особенностями обслуживаемого помещения или объекта в целом.


Специализированная программа для инженерных расчетов вентиляции Источник odstroy.ru

Альтернативой специализированным программам является онлайн-калькулятор. Такой подход позволяет определить необходимые типоразмеры вентканалов и фасонных изделий с приблизительной точностью. Но с учетом стандартизированных параметров предлагаемого ассортимента на торговых площадках такие результаты могут быть применимы для составления проекта для частного сектора.

Алгоритм расчета сечения воздуховодов

Расчет сечения воздуховодов подразумевает определение размеров воздуховодов в зависимости от расхода пропускаемого воздуха. Он выполняется в 4 этапа:

  1. Пересчет расхода воздуха в м3/с
  2. Выбор скорости воздуха в воздуховоде
  3. Определение площади сечения воздуховода
  4. Определение диаметра круглого или ширины и высоты прямоугольного воздуховода.

На первом этапе расчёта воздуховода расход воздуха G, выраженный, как правило, в м3/час, переводится в м3/с. Для этого его необходимо разделить на 3600:

  • G [м3/c] = G [м3/час] / 3600

На втором этапе следует задать скорость движения воздуха в воздуховоде. Скорость следует именно задать, а не рассчитать. То есть выбрать ту скорость движения воздуха, которая представляется оптимальной.

Высокая скорость воздуха в воздуховоде позволяет использовать воздуховоды малого сечения. Однако при этом поток воздуха будет шуметь, а аэродинамическое сопротивление воздуховода сильно возрастёт.

Малая скорость воздуха в воздуховоде обеспечивает тихий режим работы системы вентиляции и малое аэродинамическое сопротивление, но делает воздуховоды очень громоздкими.

Для систем общеобменной вентиляции оптимальной скоростью воздуха в воздуховоде считается 4 м/с. Для больших воздуховодов (600×600 мм и более) скорость воздуха может быть повышена до 6 м/с. В системах дымоудаления скорость воздуха может достигать и превышать 10 м/с.

Итак, на втором этапе расчета воздуховодов задаётся скорость движения воздуха v [м/с].

На третьем этапе определяется требуемая площадь сечения воздуховода путем деления расхода воздуха на его скорость:

  • S [м2] = G [м3/c] / v [м/с]

На четвёртом, заключительном, этапе под полученную площадь сечения воздуховода подбирается его диаметр или длины сторон прямоугольного сечения.

Выбор приточной установки

Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел Расчет сопротивления сети).

Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.

Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².

Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.

Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.

После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:

  1. Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
  2. «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
  3. Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
  4. Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.

Пример расчёта воздуховода

В качестве примера рассчитаем сечение воздуховода с расходом воздуха 1000 м3/час:

  1. G = 1000/3600 = 0,28 м3/c
  2. v = 4 м/с
  3. S = 0,28 / 4 = 0,07 м2
  4. В случае круглого воздуховода его диаметр составил бы D = корень (4·S/ π) ≈ 0,3 м = 300мм. Ближайший стандартный диаметр воздуховода — 315 мм.

В случае прямоугольного воздуховода необходимо подобрать такие А и В, чтобы их произведение было равно примерно 0,07. При этом рекомендуется, чтобы А и В не отличались друг от друга более чем в три раза, то есть воздуховод 700×100 — не лучший вариант. Более хорошие варианты: 300×250, 350×200.

Отличия кухонной вытяжки от вентиляции

Вентиляция в доме обеспечивает естественный воздухообмен и циркуляцию воздуха во всех помещениях. Она рассчитана на стандартно невысокий уровень загрязненности воздуха и не может полноценно обеспечить очистку кухни от дыма, пара и сильных запахов.

Вытяжка с воздуховодом является дополнительной воздухоочистной системой обычно принудительного типа. Она производительна и способна удалить большое количество задымленного и загрязненного воздуха, а также устранить большинство сильных кухонных запахов.

То есть, вытяжка – это второй уровень вентиляции, которая гарантированно обеспечит в вашей кухне требуемые санитарные условия и чистый воздух при любых нагрузках.

Расчет площади воздуховодов и фасонных изделий

Прямой участок воздуховода

Площадь воздуховода круглого сечения

Диаметр Длина d 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
Lм
Площадь S
м2

Площадь воздуховода прямоугольного сечения

Ширина Высота Длина a 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
Lм
Площадь S
м2



Отвод
S

Площадь отвода круглого сечения
100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
α1530456090°
Площадь
м2
Площадь отвода прямоугольного сечения
5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
α1530456090°
Площадь S
м2



Переход

Площадь перехода круглого сечения 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
D2 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
Lмм
Площадьм2Площадь перехода прямоугольного сечения
5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
D 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
Lмм
Площадьм2Площадь перехода с прямоугольного сечения на прямоугольное
Ширина Высота Ширина Высота Длина A 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
B 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
a 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
Lмм
Площадь S
м2



Тройник

Площадь тройника круглого сечения 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
Lмм
D2 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
lмм
Площадьм2Площадь тройника круглого сечения
100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
Lмм
a 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
lмм
Площадьм2Площадь тройника прямоугольного сечения
мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
Lмм
d 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
lмм
Площадьм2Площадь тройника прямоугольного сечения
5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
B 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
Lмм
a 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
lмм
Площадьм2



Заглушка

Площадь заглушки круглого сечения 100125160200250280315355400450500560630710800900100011201250140016001800200022402500мм
Площадьм2Площадь заглушки прямоугольного сечения
5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
Площадьм2



Утка прямоугольного сечения

Площадь утки со смещением в 1-ой плоскости 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
lмм
hмм
Площадьм2Площадь утки со смещением в 2-х плоскостях
5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
lмм
h1мм
h2мм
Площадьм2



Зонты

Площадь зонта островного типа 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
B 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
a 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
hмм
Площадьм2Площадь зонта пристенного типа
5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
b 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
hмм
c 5010015020025030035040045050055060065070075080085090095010001100120013001400150016001700180019002000мм
Площадьм2

Расчёт площади фасонных частей воздуховода

Человеку, не связанному с математическими формулами, будет сложно выполнить подсчёты правильно, ошибка в одном показателе повлияет на эксплуатационные характеристики вентиляционной системы, соответственно,и на качество очистки воздуха.

Для упрощения процесса расчёта площади поверхности воздуховода можно использовать онлайн-калькулятор и специальные программы, которые выполняют все алгоритмы, для этого потребуется лишь ввести первичные показатели.


Программа подсчёта и подбора элементов

Какие существуют программы для нахождения параметров фасонных частей воздуховода

В помощь инженерным работникам для исключения ошибок, связанных с человеческим фактором, а также для ускорения процесса были созданы специальные программы, с помощью которых можно не только выполнить грамотно расчёты, но и 3D моделирование будущей конструкции.

ПрограммаКраткое описание
Vent-CalcПрограмма рассчитывает площадь сечения, тягу, сопротивление на разных отрезках.
GIDRV 3.093Программа выполнит новый и контрольный подсчётданных воздуховода.
Ducter 2.5В программе можно подобрать элементы вентсистемы, рассчитать площади сечений конструкции.
CADventДанный комплекс создан на базе AutoCAD, имеет самую подробную библиотеку элементов и возможностей.


Программный расчёт и проектирование вентиляции

Расчёт квадратных метров (площади сечения) воздуховода

На размер вентиляционной трубы влияет много факторов:скорость потока,напор на стенки, объём воздуха. Если выполнить расчёты с ошибкой, например, уменьшить сечение магистральной сети, возрастёт скорость воздушных масс, появится шум, увеличится давление и потребление электроэнергии.

Расчёт площади сечения воздуховода рассчитывается по следующей формуле:

S = L × κ / ω, где:

  • L – расход воздуха, м³/ч;
  • ω – скорость движения воздушных потоков, м/с;
  • κ – расчётный коэффициент, равный 2,778.

Расчет эквивалентного диаметра воздуховодов

Эквивалентный диаметр прямоугольного воздуховода вычисляется по формуле:

  • Dэкв_пр = 2·А·В / (А+В), где А и В — ширина и высота прямоугольного воздуховода.

Например, эквивалентный диаметр воздуховода 500×300 равен 2·500·300 / (500+300) = 375 мм. Это означает, что круглый воздуховод диаметром 375 мм будет иметь такое же аэродинамическое сопротивление, что и прямоугольный воздуховод 500×300 мм.

Эквивалентный диаметр квадратного воздуховода равен стороне квадрата:

  • Dэкв_кв = 2·А·А / (А+А) = А.

И этот факт весьма интересен, ведь обычно чем больше площадь сечения воздуховода, тем ниже его сопротивление. Однако круглая форма сечения воздуховода имеет наилучшие аэродинамические показатели. Именно поэтому сопротивление квадратного и круглого воздуховодов равны, хотя площадь сечния квадратного воздуховода на 27% больше площади сечения круглого воздуховода.

В общем случае формула для эквивалентного диаметра воздуховода выглядит следующим образом:

  • Dэкв = 4·S / П, где S и П — соответственно, площадь и периметр воздуховода.

Используя эту формулу можно подтвердить правильность вышеприведённых формул для прямоугольного и квадратного воздуховодов, а также убедиться в том, что эквивалентный диаметр круглого воздуховода равен диаметру этого воздуховода:

  • Dкругл = 4·π·R2 / 2·π·R = 2R = D.

Кроме того, для расчета может помочь таблица эквивалентного диаметра воздуховодов

Факторы, оказывающие влияние на размеры воздухопроводов

На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.

Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:

1. Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал. 2. Пропускная способность также зависит от скорости воздуха (м/с).

Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки. Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.

3. Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.

В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.

Таблица 1

Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.

Воздуховоды производят не только круглой, но и прямоугольной и овальной формы.

Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.

Расчёт материалов для воздуховодов и фасонных частей

Имея площадь прямых участков, количество и тип фасонных изделий можем легко определить объём материала, который будет использован при их изготовлении. К примеру, для изготовления секции воздуховода круглого сечения диаметром 100 мм и длиной 1 м будет необходимо 0.314 м² жести.

Это легко вычислить по формуле:

π × D (100 мм = 0,1 м) × L (1 м) = 3,14 × 0,1 × 1 = 0,314 м².

Аналогичным образом вычисляется количество материала для прямых участков воздуховодов прямоугольного сечения.

Для расчёта фасонных изделий не существует определённых формул. Точнее, они есть: для каждой части фасонного изделия определённой формы отдельная формула. Но осуществлять их ручной расчёт нецелесообразно. Как правило, требуемое количество материала вычисляется эмпирически после изготовления лекал раскроя.


Процесс создания воздуховода круглого сечения методом намотки стальной спиральной ленты

Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы

В качестве примера определим эквивалентный диаметр воздуховода 600×300:

Dэкв_600_300 = 2·600·300 / (600+300) = 400 мм.

Интересно отметить, что площадь сечения круглого воздуховодам диаметром 400 мм составляет 0,126 м2, а площадь сечения воздуховода 600×300 составляет 0,18 м2, что на 42% больше. Расход стали на 1 метр круглого воздуховода сечением 400 мм составляет 1,25 м2, а на 1 метр воздуховода сечением 600×300 — 1,8 м2, что на 44% больше.

Таким образом, любой аналогичный круглому прямоугольный воздуховод значительно проигрывает ему как в компактности, так и в металлоемкости.

Рассмотрим ещё один пример — определим эквивалентный диаметр воздуховода 500×100 мм:

Dэкв_500_100 = 2·500·100 / (500+100) = 167 мм.

Здесь разница в площади сечения и в металлоемкости достигает 2,5 раз. Таким образом, формула эквивалентного диаметра для прямоугольного воздуховода объясняет тот факт, что чем больше «расплющен» воздуховод (чем больше разница между значениями А и В), тем менее эффективен этот воздуховод с аэродинамической точки зрения.

Это одна из причин, по которой в вентиляционной технике не рекомендуется применять воздуховоды, в сечении которых одна сторона превышает другую более чем в три раза.

Общие сведения

Аэродинамический расчёт – методика определения размеров поперечного сечения воздуховодов для нивелирования потерь давления, сохранения скорости движения и проектного объёма перекачиваемого воздуха.

При естественном способе вентилирования требуемое давление дано изначально, но надо определить сечение. Это связанно с действием гравитационных сил, побуждающих воздушные массы к вытяжке в помещение из вентиляционных шахт. При механическом способе работает вентилятор, и необходимо рассчитать напор газа, а также площадь сечения короба. Используются максимальные скорости внутри вентканала.

Для упрощения методики воздушные массы принимаются за жидкость с нулевым процентом сжатия. На практике это действительно так, так как в большей части систем давление минимально. Оно образуется только от местного сопротивления, при его соударении со стенками воздуховодов, а также на местах изменения площади. Подтверждение тому нашли многочисленные опыты, проводимые по методике, описанной в ГОСТ 12.3.018-79 «Система стандартов безопасности труда (ССБТ). Системы вентиляционные. Методы аэродинамических испытаний».

Методика предполагает подбор площади и формы сечения для каждого участка вентиляционной системы. Если брать её за одно целое, то определение потерь будет условное, не соответствующее реальной картине. Кроме самого движения дополнительно вычисляется и нагнетание.

Расчёты воздуховодов для вентиляции, по аэродинамике, ведутся с различным числом известных данных. В одном случае вычисление начинается с нуля, а в другом — больше половины исходных параметров уже известно.

Расчёт мощности нагревания в сети

Температура воздуха, поступающего в помещения, строго регламентируется. К примеру, для жилых сооружений минимальное значение составляет +18°С. Для расчёта мощности используемого нагревательного оборудования необходимо из нормативов узнать минимальное значение температуры той климатической зоны, где расположено здание. Разница этих температур является основным фактором определения мощности нагревательного устройства. При этом, совсем не обязательно использовать максимально мощный калорифер, способный обеспечить нагрев помещения при минимальной внешней температуре. Если вентиляция имеет систему регулировки производительности, то во время максимальной нагрузки на калорифер просто снижается интенсивность подачи воздуха.

Расчёт мощности нагревательного устройства осуществляется по формуле:

Р — расчётная мощность устройства нагрева (рекуператор или калорифер), (кВт);

Δt — разница значений температуры воздуха на входе в систему вентиляции и на подаче в помещение, (°С);

Q — производительность вентиляционной системы, (м³/ч);

τv— объёмная теплоёмкость воздуха, зависит от совокупности значений влажности, температуры и давления, но принимается в качестве коэффициента 0,336 Вт × (ч/м³/°С).


Примеры использования воздуховодов в качестве декоративного элемента помещений

Правила использования измерительных устройств

При измерении скорости потока воздуха и его расхода в системе вентиляции и кондиционирования нужен правильный подбор приборов и соблюдение следующих правил их эксплуатации.

Это позволит получить точные результаты расчета воздуховода, а также составить объективную картину системы вентиляции.

Соблюдайте режим температур, который обозначен в паспорте прибора. Также следите за положением сенсора зонда. Он должен быть всегда ориентирован точно навстречу потоку воздуха.

Если не соблюдать это правило, результаты измерений будут искажены. Чем больше будет отклонение сенсора от идеального положения, тем выше будет погрешность.

Расчёт скорости воздуха в воздуховоде

При расчёте системы вентиляции один из основных показателей – кратность воздухообмена. Иными словами,какое количество воздушных масс необходимо для комфортного проветривания 1 м³ комнаты за 1 час. В данном случае также можно обратиться к разработочным таблицам, но следует знать, что все показатели в них округлены, поэтому более точные данные получаются при самостоятельных расчётах. Рассчитать кратность воздухообмена можно по формуле:

N = V / W, где

  • V – количество свежих воздушных масс, которые поступают в помещение за 60 минут (м³/час);
  • W – объём комнаты, м³.

Это следует знать! Комфортная скорость воздухообмена для большинства вентсистем бытового характера равна 3−4 м/с.

Провести аэродинамические расчёты и вычислить скорость перемещения воздуха можно по следующей формуле:

ω = L / 3600 × S, где

  • L – объём используемого воздуха за 1 час;
  • S – площадь сечения воздуховода.


Нормы воздухообмена для квартиры

Санитарные требования нормативных документов

Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:

  1. «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
  2. «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».

Рекомендуем: Оптимальный размер грядки: какой должна быть ширина проходов

В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. Применяется 2 типа размерности – расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.

Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.


Проветривание — примитивный способ обновления кислорода в жилище

В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):

  • гостиная, детская, спальня – 1 раз в час;
  • кухня с электрической плитой – 60 м³/ч;
  • санузел, ванная, туалет – 25 м³/ч;
  • для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
  • , сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
  • кладовка, гардеробная и прочие подсобные помещения – кратность 0.2;
  • сушильная либо постирочная – 90 м³/ч;
  • библиотека, рабочий кабинет – 0.5 раз в течение часа.

Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических – до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.


Выброс вредных газов за счет природной тяги — самый дешевый и простой способ обновлять воздух

В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:

  1. Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
  2. Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
  3. Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.

Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».

Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.

Потери давления на местных сопротивлениях

В сети воздуховодов есть места наибольшего сопротивления потоку воздуха: повороты, изгибы, тройники, места изменения сечения на переходниках. Расчёт их аэродинамических потерь производится отдельно, так как каждый тип фасонного изделия имеет индивидуальные коэффициенты сопротивления.


Таблица коэффициентов местного сопротивления (КМС) для различных фасонных изделий

Формула потери давления на каждом участке местного сопротивления с учётом коэффициентов:

где S – скорость, ρ – плотность воздуха.

Важно! Плотность воздуха зависит от его температуры. К примеру, при 20°С плотность воздуха будет составлять 1,2 кг/м³. Данный параметр также берётся из таблиц в соответствующих нормативных источниках.

Общая формула потери давления в фасонных изделиях:

Σξ – сумма параметров местных сопротивлений.


Звуко- и теплоизоляция вентиляционных коробов

ИНЖЕНЕРНАЯ ПОМОЩЬ

где: Qт – тепловая мощность калорифера, Вт; ρвозд. – плотность воздуха. Плотность сухого воздуха при 15°С на уровне моря составляет 1,225 кг/м³; свозд. – удельная теплоемкость воздуха, равная 1 кДж/(кг∙К)=0,24 ккал/(кг∙°С); tвн. – температура воздуха на выходе из калорифера, °С; tнар. – температура наружного воздуха, °С (темп-ра воздуха наиболее холодной пятидневки обеспеченностью 0,92 по Строительной климатологии).

Расход теплоносителя на калорифер

G= (3,6∙Qт)/(св∙(tпр-tобр ) ),

где: 3,6 — коэффициент перевода Вт в кДж/ч (для получения расхода в кг/ч); G — расход воды на теплоснабжение калорифера, кг/ч;

Qт – тепловая мощность калорифера, Вт;

св – удельная теплоемкость воды, равная 4,187 кДж/(кг∙К)=1 ккал/(кг∙°С); tпр. – температура теплоносителя (прямая линия), °С; tнар. – температура теплоносителя (обратная линия), °С.

Выбор диаметра труб для теплоснабжения калорифера

Расход воды на калорифер , кг/ч

Скорость теплоносителя в трубе
Ø , ммДу 10Ду 15Ду 20Ду 25Ду 32Ду 40Ду 50Ду 70Ду 80Ду 90Ду 100
v , м/с

Процесс нагрева воздуха в калорифере протекает при d=const (при неизменном влагосодержании).

Процесс нагрева воздуха в калорифере от -28°С до +20°С.

helpeng.ru

Формула расчёта площади воздуховодов

Площадь воздуховодов определяется путём перемножения периметра сечения воздуховода на длину воздуховода:

  • S = П·L, где П и L — соответственно, периметр и длина воздуховода в метрах.

Важно помнить о размерности величин в формуле, приведённой выше. Обычно сечение воздуховода задаётся в миллиметрах (например, диаметр 250 или сечение 500×250), а длина — в метрах (например, 5 метров). Но в формулу необходимо подставлять все величины, выраженные в метрах. Причем, предварительно следует вычислить длину периметра сечения воздуховода.

Для упрощения задачи по расчету площади воздуховодов применяют готовые формулы для круглых и прямоугольных воздуховодов.

Рекомендуемые значения скорости воздуха в системе вентиляции, м/с

КвартирыОфисыПроизводственные помещения
Приточные решетки2.0-2.52.0-2.52.5-6.0
Магистральные воздуховоды3.5-5.03.5-6.06.0-11.0
Ответвления3.0-5.03.0-6.54.0-9.0
Воздушные фильтры1.2-1.51.5-1.81.5-1.8
Теплообменники2.2-2.52.5-3.02.5-3.0
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]