Проектирование и тепловой расчет системы отопления — обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий — определение оптимальных параметров котла и системы радиаторов.
Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.
В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.
Нормы температурных режимов помещений
Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.
Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.
Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах
Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.
Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.
А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.
В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.
Для нежилых помещений офисного типа площадью до 100 м2:
- 22-24°С — оптимальная температура воздуха;
- 1°С — допустимое колебание.
Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.
Комфортная температура помещения у каждого человека «своя». Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно — это всё достаточно индивидуально
Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.
И всё же для конкретных помещений квартиры и дома имеем:
- 20-22°С — жилая, в том числе детская, комната, допуск ±2°С —
- 19-21°С — кухня, туалет, допуск ±2°С;
- 24-26°С — ванная, душевая, бассейн, допуск ±1°С;
- 16-18°С — коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С
Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.
Расчёт теплопотерь в доме
Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является «стремление» создания температурного равновесия между двумя термодинамическими системами.
Например, первая система — окружающая среда с температурой -20°С, вторая система — здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.
Однозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом. А разница температур влияет на количество утечек тепла от здания (+)
Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так «заметен» в сравнении с частным домом, поскольку квартира находиться внутри здания и «соседствует» с другими квартирами.
В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени «уходит» тепло.
Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.
Итак, объём утечек тепла от здания вычисляется по следующей формуле:
Q=Qпол+Qстена+Qокно+Qкрыша+Qдверь+…+Qi, где
Qi — объём теплопотерь от однородного вида оболочки здания.
Каждая составляющая формулы рассчитывается по формуле:
Q=S*∆T/R, где
- Q – тепловые утечки, В;
- S – площадь конкретного типа конструкции, кв. м;
- ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
- R – тепловое сопротивление определённого типа конструкции, м2*°C/Вт.
Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.
Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:
R=d/k, где
- R – тепловое сопротивление, (м2*К)/Вт;
- k – коэффициент теплопроводности материала, Вт/(м2*К);
- d – толщина этого материала, м.
В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.
Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить
В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.
Повышение эффективности теплоотдачи
При обогреве радиатором внутреннего воздуха помещения происходит также интенсивный нагрев внешней стены в области за батареей. Это ведет к дополнительным неоправданным потерям тепла.
Предлагается для повышения эффективности теплоотдачи радиатора отгораживать отопительный прибор от наружной стены теплоотражающим экраном.
Рынок предлагает множество современных изоляционных материалов с отражающей тепло фольгированной поверхностью. Фольга защищает согретый батареей теплый воздух от контакта с холодной стеной и направляет его внутрь комнаты.
Для правильной работы границы установленного отражателя должны превышать габариты радиатора и с каждой стороны на 2-3 см выступать. Промежуток между отопительным прибором и поверхностью тепловой защиты следует оставлять величиной 3-5 см.
Для изготовления теплоотражающего экрана можно посоветовать изоспан, пенофол, алюфом. Из приобретенного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.
Фиксировать экран, отражающий тепло отопительного прибора, на стене лучше всего силиконовым клеем или посредством жидких гвоздей
Рекомендуется отделять лист изоляции от внешней стены небольшой воздушной прослойкой, например, с помощью тонкой пластиковой решетки.
Если отражатель стыкуется из нескольких частей изоляционного материала, места соединений со стороны фольги необходимо проклеивать металлизированной клейкой лентой.
Определение мощности котла
Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.
Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.
Котел — это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.
Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.
Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:
Ркотла=(Sпомещения*Рудельная)/10, где
- Sпомещения— общая площадь отапливаемого помещения;
- Руделльная— удельная мощность относительно климатических условий.
Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.
Существует иное соотношение, которое учитывает этот параметр:
Ркотла=(Qпотерь*S)/100, где
- Ркотла— мощность котла;
- Qпотерь— потери тепла;
- S — отапливаемая площадь.
Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.
В большинстве систем отопления частных домов рекомендуется обязательно использовать расширительный резервуар, в котором будет храниться запас теплоносителя. Каждый частный дом нуждается в горячем водоснабжении
Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:
Ркотла=(Qпотерь*S*К)/100, где
К — будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.
Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.
VALTEC C.O. 3.8. Программа для проектирования систем отопления
VALTEC C.O. – расчетно-графическая программа для проектирования систем радиаторного и напольного отопления c использованием оборудования VALTEC, разработанная компанией SANKOM Sp. z o.o. на базе новейшей версии программы Audytor C.O. – 3.8. Продукт позволяет конструировать и регулировать системы отопления, производить полный комплекс гидравлических и тепловых расчетов. Программа сертифицирована на соответствие действующим строительным нормативам РФ и требованиям Системы добровольной сертификации НП «АВОК» (
).
Особенности подбора радиаторов
Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы «тёплый» пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.
Тепловой радиатор — это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через «лепестки».
Алюминиевый и биметаллический радиатор отопления пришёл на смену массивным чугунным батареям. Простота производства, высокая теплоотдача, удачная конструкция и дизайн сделали это изделие популярным и распространённым инструментом излучения тепла в помещении
Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.
Варианты вычислений:
- По площади. N=(S*100)/C, где N — количество секций, S — площадь помещения (м2), C — теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт — количество теплового потока, которое необходимо для нагрева 1 м2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
- По объёму. N=(S*H*41)/C, где N, S, C — аналогично. Н — высота помещения, 41 Вт — количество теплового потока, которое необходимо для нагрева 1 м3 (эмпирическая величина).
- По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 — аналогично. к1 — учёт количества камер в стеклопакете окна комнаты, к2 — теплоизоляция стен, к3 — соотношение площади окон к площади помещения, к4 — средняя минусовая температура в наиболее холодную неделю зимы, к5 — количество наружных стен комнаты (которые «выходят» на улицу), к6 — тип помещения сверху, к7 — высота потолка.
Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.
Видео описание
Об особенностях подбора котла и зависимости его мощности от различных характеристик дома рассказывает специалист в видео:
Алгоритм расчета количества теплоты с учетом теплопотерь
Вычисление мощности отопительной системы согласно СНиП – это самый точный метод расчета. Он позволяет подобрать эффективное оборудование для обогрева помещений. Расчет тепловой мощности осуществляется в следующей последовательности:
- Измеряется площадь перекрытия, пола, всех наружных стен, оконных конструкций в каждом помещении.
- Вычисляются теплопотери через каждое ограждение дома, которое контактирует с улицей.
- Определяется количество тепла, расходуемого на нагрев воздуха, поступающего из системы вентиляции.
- Складываются все ранее полученные значения тепловой энергии.
Важно! Если расчет по тепловым нагрузкам выполняется для двухэтажного дома, тогда при вычислениях не учитываются межэтажные перекрытия, потому что они не контактируют с окружающей средой.
Тепловые потери через наружные строительные конструкции постройки – это количество тепла, которое «улетучивается» на улицу. При этом значение для каждого материала будет разным, потому что они отличаются теплопроводностью и толщиной.
Теплопотери через внешние конструкции жилой постройки Источник twimg.com
На заметку! При вычислении площади наружных стен не учитывается квадратура оконных проемов. Ведь через светопрозрачные конструкции всегда теряется больше тепла. Поэтому для них выполняется отдельный расчет.
Когда замеряется ширина помещений, тогда к значению прибавляется половина толщины межкомнатных перегородок. Еще необходимо не забывать про наружный угол. Обязательно учитывается его размер. При измерении считают полную площадь каждой ограждающей строительной конструкции дома. Ведь через всю ее поверхность происходит потеря тепла.
Гидравлический расчёт водоснабжения
Безусловно, «картина» расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.
Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла — это оптимальный вариант. При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей
Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.
Объём горячей воды в отопительной системе рассчитывается по формуле:
W=k*P, где
- W — объём носителя тепла;
- P — мощность котла отопления;
- k — коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон — 10-15 л).
В итоге конечная формула выглядит так:
W = 13.5*P
Скорость теплоносителя — заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.
Эта величина помогает оценить тип и диаметр трубопровода:
V=(0.86*P*μ)/∆T, где
- P — мощность котла;
- μ — КПД котла;
- ∆T — разница температур между подаваемой водой и водой обратном контуре.
Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются «фундаментом» будущей системы отопления.
Коротко о главном
Количество требуемого тепла всегда вычисляется, когда создается отопление. Ведь только так можно создать эффективную систему обогрева дома. С помощью этого параметра определяется скорость передачи тепловой энергии от отопительного оборудования и ее потребления конкретным объектом. Значение данной характеристики зависит от объема дома, климатической зоны его расположения, теплопроводности материалов, размеров радиаторов, внутренней и наружной температуры.
Необходимая тепловая энергия может быть вычислена упрощенным или точным методом. Способы по укрупненным данным подразумевают расчет по площади или по объему. Для более точного вычисления определяют общие теплопотери объекта через все наружные строительные конструкции. Дополнительно учитывается расходуемое тепло на вентиляцию.
Пример теплового расчёта
В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, «зимний сад» и подсобные помещения.
Фундамент из монолитной железобетонной плиты (20 см), наружные стены — бетон (25 см) со штукатуркой, крыша — перекрытия из деревянных балок, кровля — металлочерепица и минеральная вата (10 см)
Обозначим исходные параметры дома, необходимые для проведения расчетов.
Габариты здания:
- высота этажа — 3 м;
- малое окно фасадной и тыльной части здания 1470*1420 мм;
- большое окно фасада 2080*1420 мм;
- входные двери 2000*900 мм;
- двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.
Общая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.
Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей — это совсем другой тип материала со своим тепловым сопротивлением
Начинаем с расчёта площадей однородных материалов:
- площадь пола — 152 м2;
- площадь крыши — 180 м2 , учитывая высоту чердака 1.3 м и ширину прогона — 4 м;
- площадь окон — 3*1.47*1.42+2.08*1.42=9.22 м2;
- площадь дверей — 2*0.9+2*2*1.4=7.4 м2.
Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м2.
Переходим к расчёту теплопотерь на каждом материале:
- Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт;
- Qкрыша=180*40*0.1/0.05=14400 Вт;
- Qокно=9.22*40*0.36/0.5=265.54 Вт;
- Qдвери=7.4*40*0.15/0.75=59.2 Вт;
А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.
В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.
Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.
Значит, N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9.
Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.
Переходим к расчёту количества теплоносителя в системе — W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.
В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.
Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:
- Расчет системы отопления частного дома: правила и примеры расчёта
- Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры
Пример №2
Необходимо определить марку открытого настенного конвектора с кожухом КН-20к «Универсал-20», который устанавливается на однотрубный стояк проточного типа. Кран возле устанавливаемого прибора отсутствует.
Определяет среднюю температуру воды в конвекторе:
tcp = (105 — 2) — 0,5х1410х1,04х1,02х3,6 / (4,187х300) = 100,9 °С.
В конвекторах «Универсал-20» плотность теплового потока равна 357 Вт/м2.имеющиеся данные: µtcp=100,9-18=82,9°С, Gnp=300кг/ч. По формуле qпр =qном(µ tср /70)1+n (Gпр /360)p пересчитываем данные:
qnp = 357(82,9 / 70)1+0,3(300 / 360)0,07 = 439 Вт/м2.
Определяем уровень теплоотдачи горизонтальных (1г-=0,8 м) и вертикальных (lв=2,7 м) труб (с учетом Dy20) используя формулу Qтр = qвхlв +qгхlг. Получаем:
Qтр = 93х2,7 + 115х0,8 = 343 Вт.
Воспользовавшись формулой Ap = Qnp/qnp и Qпp = Qп — µ трхQтр, определяем расчетную площадь конвектора:
Ар =(1410 — 0,9х343) / 439 = 2,51 м2.
То есть, к установке принят конвектор «Универсал-20» длина кожуха которого составляет 0,845 м (модель КН 230-0,918, площадь которой 2,57м2).