Расчет потери напора в трубопроводе, Гидравлическое сопротивление трубы


Коэффициент гидравлического трения.

Для определения гидравлического сопротивления от трения о стенки трубы Sтр необходимо знать параметр Дарси λ – коэффициент гидравлического трения по длине.

В технической литературе приводится значительное количество формул разных авторов, по которым выполняется вычисление коэффициента гидравлического трения в различных диапазонах значений числа Рейнольдса.

Обозначения в таблице:

  • Re – число Рейнольдса;
  • k – эквивалентная шероховатость внутренней стенки трубы (средняя высота выступов), м.

В [1] приведена еще одна интересная формула расчета коэффициента гидравлического трения:

λ=0,11·[(68/Re+k/D+(1904/Re)14)/(115·(1904/Re)10+1)]0,25

Вячеслав Леонидович выполнил проверочные расчеты и выявил, что вышеприведенная формула является наиболее универсальной в широком диапазоне чисел Рейнольдса!

Значения, полученные по этой формуле чрезвычайно близки значениям:

  • функции λ=64/Re для зоны ламинарного характера потока в диапазоне 10<Re<1500;
  • функции λ=0,11·(68/Re+k/D)0,25для зоны турбулентного характера потока при Re>4500;
  • в диапазоне 1500<Re<4500 согласно анализу присутствует переходная зона.

В переходной зоне, согласно опытам Никурадзе, график функции λ=f(Re,D,k) имеет сложную форму. Он представляет собой две сопряженные обратные кривые, которые в свою очередь сопрягаются с одной стороны с кривой гладких труб (ламинарный поток), а с другой стороны с прямыми относительной шероховатости.

Данная зона до конца не изучена, поэтому желательно гидравлические режимы проектируемых систем рассчитывать без захода в эту область: 1500<Re<4500!

На следующем рисунке показаны графики функции λ=f(Re,D,k), построенные по вышеприведенной универсальной формуле. Характер кривых в переходной области соответствует графикам Никурадзе [2, 4].

Пользовательская функция в Excel КтрТрубаВода(Рвода,tвода,G,D,kэ) выполняет расчет коэффициента гидравлического трения λ по рассмотренной универсальной формуле. При этом везде далее kэ=k.

Внимание!

  1. В зоне переходного характера потока происходит смена знака наклона кривой λ, что может вызвать неработоспособность систем автоматического регулирования!
  2. ПФ КтрТрубаВода(Pвода,tвода,G,D,kэ) при турбулентном потоке существенно зависит от значения – эквивалентной шероховатости внутренней поверхности трубы. В связи с этим следует обращать внимание на задание объективного значения с учётом используемых при монтаже труб (см. [2] стр.78÷83).

Расчет в Excel гидравлических сопротивлений.

Для облегчения выполнения рутинных гидравлических расчетов Полковов В.Л. разработал ряд пользовательских функций. Перечень некоторых из них, наиболее часто используемых на практике, приведен в таблице ниже.

Некоторые пояснения по аргументам пользовательских функций:

  • ГСдиффузор(Pвода,tвода,G,Dmin,Dmax,kэ,L) – свободные размеры;
  • ГСпереходДиффузор(Pвода,tвода,G,Dmin,Dmax,kэ) – стандартный переход;
  • ГСконфузор(Pвода,tвода,G,Dmin,Dmax,kэ,L) – свободные размеры;
  • ГСпереходКонфузор(Pвода,tвода,G,Dmin,Dmax,kэ) – стандартный переход;
  • ГСотвод(Pвода,tвода,G,D0,R0,Угол,kэ) – свободные размеры;
  • ГСотводГОСТ(Pвода,tвода,G,D,Угол,kэ) – стандартный отвод.

Приведённые пользовательские функции желательно использовать с учётом начального участка транспортирования (расстояния от одного гидравлического сопротивления до следующего гидравлического сопротивления). Это позволяет уменьшить погрешности расчётов, вызванных влиянием «неустановившегося» характера потока жидкости.

Для турбулентных течений длина начального участка должна быть не менее:

Lнач=(7,88·lg (Re) – 4,35)·D

Для ламинарных течений минимальная длина начального участка:

Lнач=B·Re·D

Здесь В=0,029 по данным Буссинекса, и В=0,065 по данным Шиллера, D — внутренний диаметр системы транспортирования.

Далее на скриншоте показана таблица в Excel с примерами расчетов гидравлических сопротивлений.

Литература:

  1. Черникин А.В. Обобщение расчета коэффициента гидравлического сопротивления трубопроводов // Наука и технология углеводородов. М.: 1998. №1. С. 21–23.
  2. И.Е. Идельчик, «Справочник по гидравлическим сопротивлениям». 3-е издание, переработанное и дополненное. Москва, «Машиностроение», 1992.
  3. А.Д. Альтшуль, «Гидравлические сопротивления», издание второе, переработанное и дополненное. Москва, «НЕДРА», 1982.
  4. Б.Н. Лобаев, д.т.н., профессор, «Расчёт трубопроводов систем водяного и парового отопления». Государственное издательство литературы по строительству и архитектуре. УССР, Киев, 1956.

Ссылка на скачивание файла: gidravlicheskie-soprotivleniya (xls 502,0KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

  • Расчет трубопровода с параллельными участками
  • Гидравлический расчет трубопроводов

Типы разводки СВО

Хотя принцип работы СВО одинаков (получение и распространение тепла по жилью), ее работа может организовываться по-разному. Системы удобно различать по способу организации циркуляции. Возможна естественная циркуляция, когда теплоноситель приходит в движение благодаря силе тяжести, и принудительная, когда с этим справляется насос.

Контуры водяного отопления имеют отличия по конфигурации и масштабу, бывают одно- и двухтрубными. Они подчинены разным закономерностям, поэтому гидравлический расчет трубопровода проводится с учетом отличий. Распространены следующие виды однотрубных отопительных контуров:

  • С нижней разводкой (народное название «Ленинградка»). Труба проходит через все помещения по кругу и возвращается в котел. Плюс системы: в ней мало труб, ее тепловая мощность не превышает 30-35 кВт. Минусом является неравномерное распределение тепла, невозможность регулирования.


Однотрубный контур с нижней разводкой Источник termokraft.ru

  • С верхней разводкой (московская система). Подающая магистраль располагается выше нагревательных приборов. Система может работать без электропитания, температура в батареях распределяется равномерно благодаря расчету и трубам с разным диаметром. Минус заключается в сложности плавной регулировки.

Двухтрубные разводки представлены следующими разновидностями:

  • Тупиковая система. Распространенный вариант, в котором рабочая среда подается и отводится от каждой батареи по разным магистралям (прямой и обратной). Такая организация отопления встречается в разных типах жилья; ее особенность состоит в том, что прямая магистраль (подающая тепло) имеет большую протяженность, чем обратка.
  • Двухтрубная попутная система (петля Тихельмана). Обратная магистраль начинается с первого радиатора, затем к ней присоединяются обратки с остальных радиаторов, после чего теплоноситель возвращается к котлу. Получается, что по прямой и обратной магистрали рабочая среда движется в одном (попутном) направлении. Система работает стабильно, хорошо распределяет тепло, но является самой материалоемкой.


Обратная магистраль – петля Тихельмана Источник izion.pro

  • Лучевая разводка (она же веерная, коллекторная, шкафная). Трубы расходятся лучами из одной точки (коллектора), здесь же находится управление. Достоинство разводки: она делает доступной отдельную регулировку температуры (или отключение) каждого прибора. Систему легко автоматизировать, она проста в проектировании и расчетах трубопровода. Минус: большие затраты на монтаж из-за большого количества труб.

Смотрите также: Каталог компаний, что специализируются на водоснабжении, канализации и сопутствующих работах

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]