Гидравлический расчёт системы отопления с формулами и примерами


Здесь вы узнаете:

  • Виды систем отопления
  • Определение расхода теплоносителя и диаметров труб
  • Определение сопротивления
  • Таблица гидравлического расчёта систем водяного отопления
  • Гидравлическая увязка
  • Определение потерь
  • Мощность генератора тепла
  • Динамические параметры теплоносителя
  • Обзор программ для гидравлических вычислений
  • Гидравлический расчет системы отопления – пример расчета
  • Пример расчета в Excel

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.


Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Все участки системы, узловые точки маркируются, подсчитывается и наносится на чертеж длина колец.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.


Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.


Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.


Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.


Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Коротко о главном

Проектирование систем отопления позволяет подобрать оптимальные параметры: достаточную подачу воды, подходящие характеристики труб, напор циркуляционных насосов. Гидравлический расчет – одна из важнейших частей проектирования. Он позволяет сбалансировать выбранный тип отопительной системы, обеспечивает ее стабильную работу и долговечное использование.

В расчетах гидравлики определяют такие параметры, как падение давления, расход воды, диаметр труб для каждого участка. Небольшую систему для частного дома можно рассчитать вручную (с помощью формул и справочников) или воспользоваться онлайн калькулятором. Для сложных и мощных отопительных контуров целесообразно использовать специализированные программы.

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: https://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

Сергей Булкин

С помощью этих программ можно сделать гидравлический расчёт, определить регулировочные характеристики запорно-регулировочной арматуры и автоматически составить заказную спецификацию. В зависимости от типа программ, расчёт осуществляется в среде AutoCAD или в собственном графическом редакторе.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

Определение сопротивления

Зачастую инженеры сталкиваются с расчетами систем теплоснабжения крупных объектов. Такие системы требуют большого количества отопительных приборов и сотни погонных метров труб. Выполнить расчет гидравлического сопротивления системы отопления можно с помощью уравнений или специальных автоматизированных программ.

Чтобы определить относительные теплопотери на сцепление в магистрали, применяют следующее приближенное уравнение: R = 510 4 v 1.9 / d 1,32 (Па/м). Применение данного уравнения оправдано для скоростей не более 1,25 м/с.

Если известно значение потребления горячей воды, то применяют приближенное уравнение для нахождения сечения внутри трубы: d = 0,75 √G (мм). После получения результата потребуется обратиться к специальной таблице, чтобы получить сечение условного прохода.

Самым утомительным и требующим больших затрат труда будет вычисление местного сопротивления в соединительных частях трубопровода, регулирующих клапанах, задвижках и отопительных приборах.

Интеграция

Для расчёта тепловых сетей в программу включена возможность автоматического построения пьезометрических графиков в MS Excel по результатам расчёта.

Посмотреть видео-ролик

В программе предусмотрена возможность импорта схемы трубопроводов из различных систем графического проектирования через файл формата PCF, импорта из проектов и экспорта в проекты программы СТАРТ, импорта из файлов открытого формата (с помощью которого можно настроить импорт данных в программу из любой объектно-ориентированной модели). Вместе с программой поставляется модуль выгрузки данных из программы PDMS в файлы открытого формата для последующего импорта в Гидросистему. Также предусмотрен экспорт схемы трубопровода в формат DXF.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.


Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Конфигуратор оборудования Valtec «Sputnik»

ПО «Конфигуратор» – это модульный конфигуратор для различных приборов учета и оборудования. Позволяет производить пуско-наладочные работы автоматизированной системы учета энергоресурсов Valtec «Sputnik».

    В состав конфигуратора входят следующие модули:
  • опрос приборов учета по радиоканалу при помощи радиомодема VT.WRM.MASTER.0
  • модуль для чтения данных с концентраторов VT.WRM
  • модуль для конфигурации беспроводного счетчика импульсов-регистратора GSM/GPRS VT.WLR.GSM
  • модуль для конфигурации беспроводного счетчика импульсов-регистратора с радиоканалом (LoRAWAN 868 МГц) VT.LR
  • модуль для конфигурации счетчика импульсов-регистратора СИПУ (RS485/M-Bus) VT.MB/ VT.RS

Мощность генератора тепла

Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный – на данном этапе не имеет значения. Поскольку нам важна главная его характеристика – мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.

Мощность самого котла определяется по ниже приведённой формуле:

Wкотла = (Sпомещ*Wудел) / 10,

где:

  • Sпомещ – сумма площадей всех комнат, которые требую отопления;
  • Wудел – удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).

Что характерно, для разных климатических зон имеем следующие данные:

  • северные области – 1,5 – 2 кВт/м2;
  • центральная зона – 1 – 1,5 кВт/м2;
  • южные регионы – 0,6 – 1 кВт/м2.

Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.


На данной карте представлены климатические зоны с разными температурными режимами. От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии (+)

Сумма площади квартиры которую необходимо отапливать – равна общей площади квартиры и равна, то есть – 65,54-1,80-6,03=57,71 м2 (минус балкон). Удельная мощность котла для центрального региона с холодной зимой – 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.

Начальные условия примера

Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.

После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.


Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже

Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.

И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.

Динамические параметры теплоносителя

Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.

В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.

Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.

А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.


Рекомендуем применять циркуляционный насос для отопления помещений более 100 м2. Монтировать насос можно как до так и после котла, но обычно его ставят на “обратку” – меньше температура носителя, меньше завоздушенность, больше срок эксплуатации насоса

Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:

  1. По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
  2. По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.

С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.

Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.

Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.

Она высчитывается по следующей формуле:

V = (0,86*W*k)/t-to,

где:

  • W – мощность котла;
  • t – температура подаваемой воды;
  • to – температура воды в обратном контуре;
  • k – кпд котла (0,95 для газового котла).

Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.

Как производится сбор данных

Гидравлический расчёт системы в большинстве своём основывается на вычислениях связанных с расчетом отопления по площади помещения.

Поэтому необходимо иметь следующую информацию:

  • площадь каждого отдельного помещения;
  • габариты оконных и дверных разъёмов (внутренние двери на потери теплоты практически не влияют);
  • климатические условия, особенности региона.

Будем исходить из следующих данных. Площадь общей комнаты — 18,83 м2, спальня — 14,86 м2, кухня — 10,46 м2, балкон — 7,83 м2 (сумма), коридор — 9,72 м2 (сумма), ванная — 3,60 м2, туалет — 1,5 м2. Входные двери — 2,20 м2, оконная витрина общей комнаты — 8,1 м2, окно спальни — 1,96 м2, окно кухни — 1,96 м2.

Высота стен квартиры — 2 метра 70 см. Внешние стены изготовлены с бетона класса В7 плюс внутренняя штукатурка, толщиной 300 мм. Внутренние стены и перегородки — несущие 120 мм, обычные — 80 мм. Пол и соответственно потолок из бетонных плит перекрытия класса В15, толщина 200 мм.


Планировка данной квартиры предоставляет возможность создать одну единственную ветку отопления, проходящую через кухню, спальню и общую комнату, что обеспечит среднюю температуру 20-22⁰C в помещениях (+)

Что касаемо окружающей среды? Квартира находится в доме, который расположен в средине микрорайона небольшого города. Город расположен в некой низменности, высота над уровнем моря 130-150 м. Климат умеренно континентальный с прохладной зимой и достаточно тёплым летом.

Средняя годовая температура, +7,6°C. Средняя температура января -6,6°C, июля +18,7°C. Ветер — 3,5 м/с, влажность воздуха средняя — 74 %, количество осадков 569 мм.

Анализируя климатические условия региона, нужно отметить, что имеем дело с большим разбросом температур, что в свою очередь влияет на особое требование к регулировке системы отопления квартиры.

Обзор программ для гидравлических вычислений

По существу любой гидравлический расчет систем водяного отопления считается непростой инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые облегчают выполнение такой процедуры.

Можно попытаться выполнить гидравлический расчет системы обогрева в оболочке Excel, воспользовавшись уже готовыми формулами. Однако при этом возможно появление следующих проблем:

  • Большая погрешность. Во многих случаях как пример гидравлического расчета системы для отопления берутся с одной или двумя трубами схемы. Найти такие же вычисления для коллекторной проблематично;
  • Для правильного учета сопротивления в плане гидравлики трубопровода нужны справочные данные, которые отсутствуют в форме. Их необходимо искать и вводить дополнительно.

Беря во внимание такие факторы, специалисты рекомендуют применять программы для расчета. Большое количество из них платные, однако некоторые имеют демоверсию с небольшими возможностями.

Oventrop CO

Наиболее простая и ясная программа для гидравлического расчета теплосети. Интуитивный интерфейс и гибкая настройка смогут помочь быстро разобраться с невидимыми моментами ввода данных. Маленькие проблемы могут появиться при первой настройке комплекса. Потребуется ввести все параметры системы, начиная от самого материала труб и завершая размещением ТЕНОВ.

Отличается гибкостью настроек, возможностью делать самый простой гидравлический расчет теплоснабжения как для новой теплосети, так же и для модернизации старой. Выделяется от заменителей хорошим графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитывается для профессионального сопротивления в плане гидравлики теплосети. Бесплатная версия имеет очень много противопоказаний. Сфера использования – проектирование теплоснабжения в больших общественных и производственных зданиях.

В практических условиях для теплоснабжения автономного типа частных квартир и домов гидравлический расчет делается не всегда. Однако это способно привести к ухудшению работы системы обогрева и быстрой поломке его компонентов – отопительных приборов, труб и котла. Что этого избежать нужно вовремя высчитать параметры системы и сопоставить их с фактическими для последующей оптимизации работы теплоснабжения.

HERZ C.O.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Инструмент разработчика Microsoft Excel

Microsoft Excel для гидравлического расчета в тепловых сетях — самый доступный для пользователей инструмент. Его всеобъемлющий табличный редактор может разрешить много вычислительных задач. Впрочем, при выполнении расчетов тепловых систем требуется выполнения специальных требований. К таковым можно перечислить:

  • нахождение предшествующего участка в направлении движения среды;
  • расчет диаметра трубы по данному условному показателю и обратное вычисление;
  • установление коэффициента поправки к размеру удельных потерь напора по данным и эквивалентной шероховатости материала трубы;
  • вычисление плотности среды по ее температуре.

Конечно, применение Microsoft Excel для гидравлического расчета в тепловых сетях никак не дает возможность абсолютно упростить ход вычислений, который изначально создает сравнительно большие трудозатраты.

ПО для гидромеханического расчета сетей или пакет ГРТС — компьютерное приложение, которое исполняет гидромеханические подсчеты многотрубных сетей, включая тупиковую конфигурацию. Платформа ГРТС содержит языковый функционал формул, позволяющий установить необходимые характеристики расчета и подобрать формулы для точности их определения. Вследствие применения этого функционала, расчетчик имеет возможность независимо найти технологию вычислений и установить требуемую сложность.

Имеется две модификации приложения ГРТС: 1.0 и 1.1. По окончанию пользователь получит следующие результаты:

  • расчет, в котором тщательно расписана методология вычислений;
  • отчет в табличном виде;
  • передачу вычислительных баз данных в Microsoft Excel;
  • пьезометрический график;
  • график температуры теплоносителя.

Приложение ГРТС 1.1 считается наиболее современной модификацией и поддерживает новейшие стандарты:

  • Расчет диаметров труб по данным напорам в концевых точках тепловой схемы.
  • Модернизирована справочная платформа. Команда «?» открывает справочную область приложения на экране монитора.
  • Гидравлический расчет системы отопления – пример расчета

    В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

    Исходные данные для расчета:

    • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
    • параметры системы – tг = 750С, tо = 600С;
    • расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
    • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
    • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
    • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
    • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

    Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

    На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

    На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

    0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

    Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

    Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

    Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

    Применения нормативного метода

    Вам будет интересно:Сталь Х12Ф1: характеристики и применение

    Гидравлику сетей выполняют на базе таблиц предельных часовых нагрузок тепла и схемы теплоснабжения города или района с указанием источников, расположения магистральных, внутриквартальных и внутридомовых инженерных систем, с обозначением границ балансовой принадлежности собственников сетей. Гидравлический расчет трубопроводов тепловых сетей каждого участка до вышеуказанной схемы производится отдельно.

    Данная методика расчета применяется не только для сетей отопления, но также для всех трубопроводов, транспортирующих жидкие среды, в том числе газоконденсата и других химических жидких сред. Для трубопроводных систем теплоснабжения должны быть внесены изменения с учетом кинематической вязкости и плотности носителей. Это связано с тем, что эти характеристики оказывают влияние на показатель удельной потери напора в трубах, а скорость потока связана с плотностью транзитной среды.

    VHM-T Serviсe. Программа для работы с счетчиками тепла VALTEC

      Программа VHM-T Serviсe предназначена для работы со счетчиками тепла VALTEC VHM-T в части:
    • чтения текущих показаний и характеристик счетчика;
    • работы с дневными, месячными и годовыми архивами;
    • формирования ведомостей учета потребления тепловой энергии;
    • настройки даты, времени и автоматического перехода на летнее/зимнее время (если необходимо);
    • настройки счетчика для работы в автоматизированных системах учета данных.

    Требования к программному обеспечению рабочего компьютера

    • операционная система Windows XP Service Pack 3 (32/64 бит) или выше;
    • распространяемые пакеты Visual C++ для Visual Studio 2013 (доступна бесплатная загрузка с сайта microsoft.com). Как правило, указанные пакеты уже присутствуют в версиях Windows 7 и выше с актуальными обновлениями.

    Взаимодействие рабочего компьютера со счетчиком тепла осуществляется через оптоэлектронный датчик с установленными в системе соответствующими драйверами.

    Наладка коммуникации программы со счетчиком

    1. Подключить оптоэлектронный датчик к компьютеру.
    2. На передней панели счетчика тепла зажать кнопку и удерживать (около 8 секунд) до появления в правом нижнем углу экрана символа «=».
    3. Поднести оптоэлектронный датчик к оптоприемнику счетчика на передней панели.
    4. Дать команду установки связи в программе.

    — Windows XP/Server 2003/Vista/7/8/8.1 (v6.7)

    Для активизации программы надо повторно пройти регистрацию. Ключ активации присылается на электронный адрес пользователя в течении 1-2 дней.

    В случае возникновения вопросов по работе с программой вы можете их задать по адресу

    Программы для счетчиков старого образца

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]