Таблица теплопроводности строительных материалов: коэффициенты

ПОДЕЛИТЕСЬ В СОЦСЕТЯХ

FacebookTwitterOkGoogle+PinterestVk

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Монтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.


Характеристики разных видов утеплителей
В качестве утеплителей применяются следующие виды:

минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;


Данный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Для пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;


Данный вариант бывает разной толщины
пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие

При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Область применения минеральной ваты

Вата для утепления обладает незначительным коэффициентом проводимости тепла, поэтому она используется в разных строительных и промышленных областях

Важно подчеркнуть, что именно она является практически незаменимым теплоизолятором, если речь идет о работе с горячими ограждающими элементами, потому что имеет низкий уровень возгораемости

Кроме того, сейчас она активно используется в утеплении фасадов зданий, а также для создания внутренней изоляции в бетонных и железобетонных постройках. Минеральная вата применяется для обустройства систем водоотвода и отопления. В последние несколько лет из-за своей доступности для возведения небольших бань также начал использоваться данный материал. Сравнительная характеристика утеплителей

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
    Рассчитывать придется все ограждающие конструкции
  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Как выбрать материалы для теплоизоляции дома

Отметим, что универсального лучшего утеплителя не существует. Для каждого отдельного случая нужно подбирать соответствующий материал.

Чтобы разобраться, как выбрать теплоизоляцию для дома, рассмотрим ее виды:

Минеральная вата. Просто монтируется, хорошо утепляет. Но не выдерживает давления, не годится для влажных помещений. По типу сырья, из которого ее производят, бывает каменная (базальтовая), стеклянная и шлаковая. Утеплитель для дома на основе базальта совершенно не горюч, не колется. Стекловата имеет два основных плюса: она не горюча и очень дешева. Но работать с ней совсем не комфортно, так как материал колется, вызывает аллергии. Шлаковата годится только для чердаков, нежилых сооружений как неэкологичная.

  • Пеностекло
    . Выпускается в блоках, долговечное. Это новый и дорогой материал.
  • Пенопласт
    . Его популярность определяется низкой ценой. Не впитывает влагу, частично паропроницаем, не гниет, не плесневеет. Долговечен. Но имеет малую прочность. В пенопласте грызуны обожают строить гнезда. Оптимальна плотность 25 кг/м2.
  • Пенополистирол
    . Этот утеплитель производится из того же материала, что и пенопласт, но он современный и более прочный. Используется для стен, фундамента, плоских крыш. Одновременно обеспечивает влагоизоляцию. В настоящее время в рейтинге теплоизоляции пенополистирол является лидером.
  • Листовой пенополиуретан
    . По свойствам похож на пенополистирол, но является дышащим, легко впитывает воду.
  • Пена
    . Производится на основе пенополиуретана или пеноизола. Хороша для утепления стен снаружи. Покрывает поверхность полностью, без мостиков холода, благодаря чему стены после обработки обладают минимальной теплопроводностью. Но утепление таким способом обходится дорого – технология требует применения специального оборудования и квалифицированного персонала.
  • Вспененный пеноэтилен
    . Бывает ППЭ или НПЭ. Берите только ППЭ – он более долговечен. Применяется для утепления труб, стен внутри, полов. Есть варианты с отражающей пленкой из фольги.

Важные характеристики:

  • Теплопроводность
    . Показывает сколько тепла в ваттах потеряет материал. Чем меньше коэффициент, тем лучше. Среднее значение 0,038–0,046 Вт/мК.
  • Паропроницаемость
    . Способность материала дышать, пропуская пары влаги. Качество, требуемое для деревянных конструкций.
  • Усадка
    . Желательно, чтобы она была минимальна или отсутствовала. Иначе со временем под воздействием собственной массы теплоизоляция уменьшится в объеме с ухудшением свойств.
  • Гигроскопичность
    . Определяет способность материала поглощать водяной пар. Материалы с высокой гигроскопичностью менее эффективны, т.к. жидкость повышает теплопроводность. Также такие утеплители нельзя применять во влажных местах.
  • Температура эксплуатации
    . Правильно подобранный по этому параметру утеплитель будет служить качественно и долго. Например, в северных районах морозы могут достигать и -40, и -50 °С. Летом металлические крыши нагреваются до 80–90 °С.
  • Горючесть
    . Утеплители бывают горючими и негорючими. В помещениях лучше использовать негорючие или слабогорючие. Также негорючие утеплители нужно применять в пожароопасных местах.
  • Экологичность
    . Важна для применения в жилых помещениях. Экологически чистые материалы не выделяют вредных веществ.
  • Фирмы
    . Производителей качественной теплоизоляции достаточно много. Среди марок, доказавших свою эффективность, называют такие: Rockwool, Isoroc, Energoflex, Пеноплэкс, Актерм Норд, Технониколь, URSA, Hotrock, KNAUF, Isover, Экострой.

Таблица теплопроводности материалов на Па-Пен

МатериалПлотность, кг/м3Теплопроводность, Вт/(м·град)Теплоемкость, Дж/(кг·град)
Пакля1500.052300
Панели стеновые из гипса DIN 1863600…9000.29…0.41
Парафин870…9200.27
Паркет дубовый18000.421100
Паркет штучный11500.23880
Паркет щитовой7000.17880
Пемза400…7000.11…0.16
Пемзобетон800…16000.19…0.52840
Пенобетон300…12500.12…0.35840
Пеногипс300…6000.1…0.15
Пенозолобетон800…12000.17…0.29
Пенопласт ПС-11000.037
Пенопласт ПС-4700.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
Пенопласт резопен ФРП-165…1100.041…0.043
Пенополистирол (ГОСТ 15588-70)400.0381340
Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
Пенополистирол «Пеноплекс»35…430.028…0.031600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
Пенополиуретановые листы1500.035…0.04
Пенополиэтилен0.035…0.05
Пенополиуретановые панели0.025
Пеносиликальцит400…12000.122…0.32
Пеностекло легкое100..2000.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
Пенофол44…740.037…0.039

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Основные характеристики утеплителей

Предоставим для начала характеристики наиболее популярных теплоизоляционных материалов, на которые в первую очередь стоит обратить свое внимание при выборе. Сравнение утеплителей по теплопроводности следует производить только на основе назначения материалов и условий в помещении (влажность, наличие открытого огня и т.д.). Мы расположили далее в порядке значимости основные характеристики утеплителей

Мы расположили далее в порядке значимости основные характеристики утеплителей.

Сравнение строительных материалов

Теплопроводность. Чем ниже данный показатель, тем меньше требуется слой теплоизоляции, а значит, сократятся и расходы на утепление.

Влагопроницаемость. Меньшая проницаемость материала парами влаги снижает при эксплуатации негативное воздействие на утеплитель.

Пожаробезопасность. Теплоизоляция не должна гореть и выделять ядовитые газы, особенно при утеплении котельной или печной трубы.

Долговечность. Чем больше срок эксплуатации, тем дешевле он вам обойдется при эксплуатации, так как не потребует частой замены.

Экологичность. Материал должен быть безопасным для человека и окружающей природы.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Таблица теплопроводности материалов на Кл…

МатериалПлотность, кг/м3Теплопроводность, Вт/(м·град)Теплоемкость, Дж/(кг·град)
Кладка бутовая из камней средней плотности20001.35880
Кладка газосиликатная630…8200.26…0.34880
Кладка из газосиликатных теплоизоляционных плит5400.24880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
Кладка из малоразмерного кирпича17300.8880
Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000.29…0.35880
Кладка из ячеистого кирпича13000.5880
Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
Кладка «Поротон»8000.31900
Клен620…7500.19
Кожа800…10000.14…0.16
Композиты технические0.3…2
Краска масляная (эмаль)1030…20450.18…0.4650…2000
Кремний2000…2330148714
Кремнийорганический полимер КМ-911600.21150

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:

Крым
22,1 м2•°С/ВтСочи
32,75 м2•°С/ВтРостов—на—Дону
43,14 м2•°С/ВтМосква
53,18 м2•°С/ВтСанкт—Петербург

У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины

Таблица проводимости тепла воздушных прослоек

Сравнение утеплителей по виду и свойствам

Минеральная вата имеет низкую теплопроводность. Это качество дает данному материалу преимущество перед большинством современных утеплителей. Компания “ТехноНиколь” предлагает разнообразный ассортимент минваты для теплоизоляции и отделки помещений.

Плиты «Роклайт»

Роклайт это теплоизоляционные плиты из каменной ваты для тепло-, звукоизоляционного покрытия. Этот вид плит применяется в частном домостроении. Идеально подходит для теплоизоляции кровель и других конструкций. Является одним из лучших теплоизоляционных материалов.

Основные плюсы «Роклайт»

  1. Правильно выбранный утеплитель способен очень долго прослужить в эксплуатации.
  2. Простой монтаж (монтаж теплоизоляции с плитами Роклайт очень удобно осуществлять за счет легкого веса. Плиты выпускаются в пачках, листы размером 1200*60*50мм. Их удобно устанавливать в каркасы, комбинировать между собой и использовать для утепления в несколько слоев)
  3. Пожаробезопасность (негорючий материал)
  4. Отсутствие влияние влаги на плиты (вата практически не впитывает влагу)
  5. Хорошие показатели теплоизоляционных свойств (минеральная вата, из которой изготовлены плиты прекрасно оказывает сопротивление холоду. Теплопроводность соответствует холодному климату и составляет 0,036 Вт/м.

Плиты «Техноблок»

Изолятор в виде плит из минеральной ваты. Материал средней плотности от 40 до 50 кг/м3. Поэтому этот вид не выдерживает высоких нагрузок и применяется в строительстве малоэтажный зданий. Применяется в отделке фасадов домов, под сайдинг. Можно использовать утеплитель укладывая его в два слоя.

Достоинства «Техноблок»:

  • Звукопоглощение (за счет плит снижается проникновение шума)
  • Паропроницаемость(циркуляция воздуха)
  • Влагостойкость
  • Длительный срок службы (производитель предоставляет гарантию до 80 лет)
  • Низкая теплопроводность. Составляет не более 0,034 Вт/м.
  • Благодаря высоким теплоизоляционным свойствам изолятор сохраняет комфортный микроклимат в жилых помещениях, что позволяет экономить на расходах за отопление.

«Техноруф»

Негорючие плиты из каменной ваты, для создания теплоизоляционного слоя.Изделия «Техноруф» устойчивы к деформации, поэтому прекрасно сохраняют свои качества. Плиты устойчивы к воздействию влаги, поэтому предотвращает появление сырости внутри помещения.

Назначение:

  1. Стена
  2. Пол
  3. Мансарды
  4. Чердачные перекрытия

Изделия сформированы из тесно переплетенных тонких волокон ваты происхождения. Имеют высокий уровень звукоизоляции, что способствует снижению воздушного и ударного уровня шума.

Качество:

  1. Долговечность (плиты состоят из вертикальных и горизонтальных волокон, что делает их прочными и увеличивает срок службы)
  2. Устойчивость утеплителя к возгоранию (плиты из негорючего материала, благодаря этому их можно использовать в помещениях любого назначения)
  3. Небольшой вес плит (это качество позволяет производить монтаж быстро и на любой поверхности).
  4. Низкая теплопроводность 0,041 Вт/м

«Техновент»

«Техновент» – утеплители нового поколения на основе минеральной базальтовой ваты.

В ассортименте 3 линейки материала:

  1. «Стандарт»;
  2. «Оптима»;
  3. «Проф».

Различие этих материалов состоит:

  • твердость материала;
  • плотность.

Все три разновидности материла предназначаются для утепления вентилируемых фасадных конструкций, причем оптимизированы для создания однослойной защитной теплоизоляции.

Высокие показатели по:

  • несгораемости;
  • экологической чистоте;
  • легкости монтажа.

«Технофлор»

«Технофлор» это материал, который предназначен для тепловой и звуковой изоляции пола. Панель из жесткой минеральной ваты используются для поверхностей, испытывающих большие нагрузки. Энергосберегающий материал, который не подвергается перепадам температурного режима. Обеспечивает изоляцию звука на 100%.

Огнестойкий, не гниет и не поддается негативным воздействиям окружающей среды. Незаменим для утепления полов спортивного типа, на который оказывается весовая механическая нагрузка. Используется для утепление полов плавающего типа, для теплого пола с методом укладки ваты на грунт либо с монтажом ваты на бетонное основание.

Продукт «Технофлор» производится в листах размерами: 1000х500х40мм и 1200х600х200мм. Сроки эксплуатации данного продукта из серии «ТехноНиколь», достигает 80 лет.

«Техноакустик»

Экологически чистый материал, предназначенный для использования в качестве звукоизоляции:

  • используется для внутренних и наружных работ;
  • для поглощения шума;
  • каркасных перегородок;
  • подвесных потолков;
  • перекрытий.

Обладает способностью удерживать и поглощать шумы до 60 дБ. В связи с этим обеспечивает высокий уровень акустической защиты стен.

«Теплоролл»

«Теплоролл» — это рулонная теплоизоляция нового поколения. Выпускается в виде матов. Маты обладают высокой прочностью. Обеспечивают высокие теплоизоляционные и звукоизоляционные качества. Используется в утеплении и изоляции кровли, перегородок и перекрытий. Широко используется в строительстве частных домов.

Особенности:

  • материал не горит и не гниет;
  • имеет низкий уровень теплопроводности;
  • устойчив к образованию плесени и грибка, не разрушается при высокой влажности;
  • не подвергается разрушению;
  • не токсичен и абсолютно безопасен для человеческого здоровья.

Теплоизоляция имеет хороший уровень заглушки шумов. Удобна в монтаже за счет небольшой длины.

«Техно Т»

Это жесткие плиты из каменной ваты, которые используют в гражданском и промышленном строительстве для тепловой термоизоляции. За счет этого этот материал имеет ограничения в использовании. Выдерживает широкий диапазон температур от −180 С до +750 С.

Это является особенностью материала и главным отличием от обычной строительной изоляции. Позволяет осуществлять монтаж тепловой изоляции воздуховодов, газоходов, промышленных печей.

Плиты могут выпускаться обработанные алюминиевой фольгой или стеклохолстом с одной стороны. Фольгированная изоляция дает ряд преимуществ. Фольгированное покрытие утеплителя не позволяет влаге попасть под покрытие, тем самым обеспечивает проникновение влаги. Фольга не пропускает холодный воздух и не выпускает тепло. Благодаря высокому коэффициенту теплообмена выдерживает перепады температур. Способна отражать ультрафиолетовые лучи.

Почему Пеноплекс востребован среди потребителей?

Может быть интересно

Теплоизоляция

Утепление потолка в бане — способы, материалы, полезные…

Теплоизоляция

Таблицы сравнительных характеристикх теплоизоляционных…

Теплоизоляция

Почему утепление пенополиуретаном — это лучшее, что…

Теплоизоляция

Теплоизоляция самоклеющаяся: как выбрать и применять?

Пеноплекс это высокоэффективный материал нового поколения. Он универсален для утепления дома. В отличие от минеральной ваты, пенополистирол не боится влаги. Благодаря этому не нуждается в дополнительной гидроизоляции. Обеспечивает высокую теплозащиту, работает как термос. Не горит. При монтаже его можно монтировать непосредственно на поверхность грунта. Плотный изолятор, хорошо переносит механические нагрузки, обладает низкой паропроницаемостью.

Рекомендации в применении:

  • Для утепления пола и цоколя дома (если он имеет статус нежилое);
  • Идеально подходит для работы на плоской кровле;
  • Утепление септиков и колодцев;
  • Теплоизоляция фасадов и внутренних стен.

Пеноплекс не пропускает влагу, поэтому он не пригоден для вентилируемых фасадов.

Преимущества материала

  • Низкая теплопроводность;
  • Минимальное водопоглощение;
  • Высокая прочность на сжатие;
  • Долговечность;
  • Морозостойкость;
  • Не подвержен гниению, пластичный материал.

Если задумано индивидуальное строительство

При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:. Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Номер п/пМатериал для стен, строительный растворКоэффициент теплопроводности по СНиП
1.Кирпич0,35 – 0,87
2.Саманные блоки0,1 – 0,44
3.Бетон1,51 – 1,86
4.Пенобетон и газобетон на основе цемента0,11 – 0,43
5.Пенобетон и газобетон на основе извести0,13 – 0,55
6.Ячеистый бетон0,08 – 0,26
7.Керамические блоки0,14 – 0,18
8.Строительный раствор цементно-песчаный0,58 – 0,93
9.Строительный раствор с добавлением извести0,47 – 0,81

Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.

Это связано с несколькими причинами:

  • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
  • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
  • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

ПоказательБетоны, растворно-бетонные смеси
ЖелезобетонЦементно-песчаный растворСложный раствор (цементно-известково-песчаный)Известково-песчаный раствор
плотность, кг/куб.м2500180017001600
коэффициент теплопроводности, Вт/(м•°С)2,040,930,870,81
толщина стен, м6,532,982,782,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

ПоказательКонструкционно-теплоизоляционные м-лы
ПемзобетонКерамзитобетонПолистиролбетонПено- и газобетон (пено- и газосиликат)Кирпич глиняныйСиликатный кирпич
плотность, кг/куб.м80080060040018001800
коэффициент теплопроводности, Вт/(м•°С)0,680,3260,20,110,810,87
толщина стен, м2,1761,040,640,352,592,78

Таблица 3.2

ПоказательКонструкционно-теплоизоляционные м-лы
Кирпич шлаковыйСиликатный кирпич 11-типустотныйКирпич силикатный 14-типустотныйСосна (поперечное расположение волокон)Сосна (продольное расположение волокон)Фанера клеёная
плотность, кг/куб.м150015001400500500600
коэффициент теплопроводности, Вт/(м•°С)0,70,810,760,180,350,18
толщина стен, м2,242,592,430,581,120,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

ПоказательТеплоизоляционные м-лы
ППТПТ полистиролбетонныеМаты минераловатныеПлиты теплоизоляционные (ПТ) из минеральной ватыДВП (ДСП)ПакляЛисты гипсовые (сухая штукатурка)
плотность, кг/куб.м3530010001902001501050
коэффициент теплопро- водности, Вт/(м•°С)0,390,10,290,0450,070,1921,088
толщина стен, м0,120,320,9280,140,2240,2241,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Теплопроводность пенопласта от 50 мм до 150 мм считаем теплоизоляцию

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Особенности применения стеновых утеплителей

Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/пМатериал стеныТеплопроводность, Вт/м·°CТолщина стены, мм
ТребуемаяДопустимая
1Газобетонный блок0,14444270
2Керамзитобетонный блок0,5517451062
3Керамический блок0,16508309
4Керамический блок (тёплый)0,12381232
5Кирпич (силикатный)0,7022211352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1Газобетонный блок D600 (400 мм)2,89 Вт/м·°C
2Газобетонный блок D600 (300 мм) + утеплитель (100 мм)4,59 Вт/м·°C
3Газобетонный блок D600 (400 мм) + утеплитель (100 мм)5,26 Вт/м·°C
4Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)2,20 Вт/м·°C
5Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)2,88 Вт/м·°C

Стена из керамзитобетонного блока

1Керамзитобетонный блок (400 мм) + утеплитель (100 мм)3,24 Вт/м·°C
2Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)1,38 Вт/м·°C
3Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)3,21 Вт/м·°C

Стена из керамического блока

1Керамический блок (510 мм)3,20 Вт/м·°C
2Керамический блок тёплый (380 мм)3,18 Вт/м·°C
3Керамический блок (510 мм) + утеплитель (100 мм)4,81 Вт/м·°C
4Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)2,62 Вт/м·°C

Стена из силикатного кирпича

1Кирпич (380 мм) + утеплитель (100 мм)3,07 Вт/м·°C
2Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)1,38 Вт/м·°C
3Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)3,05 Вт/м·°C

Нормируемое сопротивление теплопередаче по СНиП – таблица

Чтобы построить теплый дом – требуется утеплитель. Против этого уже никто не возражает. В современных условиях построить дом, отвечающий требованиям СНиП, без применения утеплителя невозможно.
То есть, деревянный или кирпичный дом, конечно, построить возможно. И строят все также. Однако чтобы соответствовать требованиям Строительных Норм и Правил, его коэффициент сопротивления теплопередаче стен R должен быть не менее 3,2. А это 150 см обычной кирпичной стены.

Для чего, спрашивается, строить «крепостную стену» в полтора метра, когда можно для получения такого же показателя R=3,2 использовать всего 15 см высокоэффективного утеплителя – базальтовой ваты или пенопласта?

А если вы проживаете не в Подмосковье, а в Новосибирской области или в ХМАО? Тогда для вас коэффициент сопротивления теплопередаче для стен будет другим. Каким? Смотрите таблицу.

Таблица 4. Нормируемое сопротивление теплопередаче СНиП 23-02-2003 (текст документа):

Внимательно смотрим и комментируем. Если что-то непонятно, задаем вопросы через ФОРМУ СВЯЗИ или пишем в адрес редактора сайта – ответ будет у вас на электронной почте или в разделе НОВОСТИ.

Итак, в данной таблице нас интересует два вида помещений – жилые и бытовые. Жилые помещения, это, понятно, в жилом доме, который должен соответствовать требованиям СНиП. А бытовые помещения — это утепленные и отапливаемые баня, котельная и гараж. Сараи, кладовые и прочие хозяйственные постройки утеплению не подлежат, а значит, и показателей по теплосопротивлению стен и перекрытий для них нет.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Температура материала

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Понятие теплопроводности

Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Что влияет на способность пенополистирола проводить тепло

Чтобы наглядно понять, что такое теплопроводность, возьмем кусок материала метровой толщины и площадью один квадратный метр. Причем одну его сторону нагреваем, а вторую оставляем холодной. Разница этих температур должна быть десятикратной. Измерив количество теплоты, которое за одну секунду переходит на холодную сторону, получаем коэффициент теплопроводности.

Отчего же именно пенополистирол способен хорошо сохранять как тепло, так и холод? Оказывается, всё дело в его строении. Конструктивно данный материал состоит из множества герметичных многогранных ячеек, имеющих размер от 2 до 8 миллиметров. Внутри у них находится воздух – он составляет 98 процентов и служит великолепным теплоизолятором. На полистирол приходится 2% от объёма.А по массе полистирол составляет 100%, т.к. воздух, условно говоря, не имеет массы.

Надо заметить, что теплопроводность экструдированного пенополистирола остается неизменной по прошествии времени. Это выгодно отличает данный материал от других пенопластов, ячейки которых наполнены не воздухом, а иным газом. Ведь этот газ обладает способностью постепенно улетучиваться, а воздух так и остается внутри герметичных пенополистирольных ячеек.

Покупая пенопласт, мы обычно спрашиваем продавца о том, каково значение плотности данного материала. Ведь мы привыкли, что плотность и способность проводить тепло неразрывно связаны друг с другом. Существуют даже таблицы этой зависимости, с помощью которых можно выбрать подходящую марку утеплителя.

Плотность пенополистирола кг/м3Теплопроводность Вт./МКв
100,044
150,038
200,035
250,034
300,033
350,032

Однако в нынешнее время придумали улучшенный утеплитель, в который введены графитовые добавки. Благодаря им коэффициент теплопроводности пенополистирола различной плотности остается неизменным. Его значение — от 0,03 до 0,033 ватта на метр на Кельвин. Так что теперь, приобретая современный улучшенный ЭППС, нет надобности проверять его плотность.

Маркировка пенополистирола теплопроводность которого не зависит от плотности:

Марка пенополистиролаТеплопроводность Вт./МКв
EPS 500.031 — 0.032
EPS 700.033 — 0.032
EPS 800.031
EPS 1000.030 — 0.033
EPS 1200.031
EPS 1500.030 — 0.031
EPS 2000.031

Экструдированный пенополистирол

Экструзия не подвержена влаге и гниению, это очень прочный и удобный в монтаже утеплитель.

Плиты Техноплекса имеют высокую прочность и сопротивление сжатию, не подвергаются разложению. Благодаря своим техническим характеристикам техноплексиспользуют для утепления отмостки и фундамента зданий. Экструдированный пенополистирол долговечен и прост в применении.

Таблица теплопроводности материалов на М-О

Магнезия в форме сегментов для изоляции труб220…3000.073…0.084
Мастика асфальтовая20000.7
Маты, холсты базальтовые25…800.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75)1500.061840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.038
Мел1800…28000.8…2.2800…880
Медь (ГОСТ 859-78)8500407420
Миканит2000…22000.21…0.41250
Мипора16…200.0411420
Морозин100…4000.048…0.084
Мрамор (облицовка)28002.9880
Накипь котельная (богатая известью, при 100°С)1000…25000.15…2.3
Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
Настил палубный6300.211100
Найлон0.53
Нейлон13000.17…0.241600
Неопрен0.211700
Опилки древесные200…4000.07…0.093

Дата: 25 сентября 2022

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.
В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения — одинаковы для каждого региона
Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Пенополистирольные утеплители в домах дачного и коттеджного типа

Многие застройщики используют материал для наружного утепления фасадов и потолочных конструкций дачных домов, которые переоборудуются под круглогодичное проживание. Основной круг применения пенополистирольной теплоизоляции – это отделка фундаментов, отмосток, утепление цементных стяжек под напольную плитку.

В отличие от минеральной ваты, пенополистирол не нуждается в обустройстве пленочной или мастичной гидроизоляции, поэтому может монтироваться непосредственно на ровную поверхность грунта.

  • Оптимальная толщина пенополистирольного утеплителя, уложенного между лагами пола, не требует изменения его высоты. Заделка монтажных зазоров и сопряжений влагостойким шпаклевочным составом позволяет эксплуатировать свойства утеплителя с максимально высокой эффективностью.
  • Фундаментная теплоизоляция существенно уменьшает температурные перепады, а отсутствие в подвале сырости положительно сказывается на комфорте микроклимата в доме, снижении расходов на оплату отопления в зимний период.
  • Пенополистирольные разъемные кожухи блокируют утечку тепла из труб отопления и горячего водоснабжения, исключают промерзание водопроводных и канализационных коммуникаций, расположенных на небольшой глубине.

Более чем умеренная стоимость пенополистирольных материалов дополняется возможностью монтажа своими руками, что позволяет уменьшить стоимость теплоизоляционных работ на 35-40%.

Покупайте прямо сейчас в нашей компании качественный утеплитель Пеноплекс по выгодной цене!

Советы и рекомендации по выбору материалов

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.
    Особенность климата
  3. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.
    Плесень на стенах
  4. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.
    Затяжка пенопласта гидроизоляцией
  5. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Тепловые потери дома

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.

Параметры проводимости тепла

Исходя из расположения и климатических особенностей, параметры теплопроводимости разнятся. Например, Крым – 2, Сочи – 2.1, Ростов-на-Дону – 2.75, Москва – 3.14, Санкт-Петербург – 3.18 м2 о С/Вт.

Определенный материал имеет свою норму проводимости. Чем она ниже, тем меньше тепла проходит.

Показатели теплопередачи для разных видов сырья:

СЫРЬЕВЕЛИЧИНА ТЕПЛОПРОВОДНОСТИПЛОТНОСТЬ
Бетон1.28-1.512300-2400
Древесина дуба0.23-0.1700
Древесина хвои0.10-0.18500
Железобетонная плита1.692500
Керамический кирпич с пустотами0.41-0.351200-1600

Теплопроводность стройматериалов взаимосвязана с их плотностью и степенью влажности. Одно и то же сырье, но выпускаемое другим изготовителем может иметь разные коэффициенты. Рекомендуется не забывать читать его инструкции. Если стена будет строиться не из одного сырья, показатель нужно вывести для всех видов. Потом их значения суммируются. После выбора строительных материалов следует рассчитать термическое сопротивление. Если величины будут как в таблице или больше, это правильный показатель. В обратном случае, увеличивается толщина стены или утеплителя. Все данные пересчитываются заново.

Источник: nastilaem.com

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]