Накипь: почему она образуется и как с ней бороться?

Вам уже приходилось сталкиваться с вредными последствиями воздействия накипи?

Стиральная машина, кофемашина, газовые котёл… Кто из них стал последней жертвой известкового налёта?

Хотите узнать больше — что такое накипь и как с ней бороться?

Читайте нашу статью! Мы давно занимаемся вопросами защиты оборудования от накипи и уверены, что наши знания будут полезными для вас!

На снимке: образцы накипи из труб, взятые нами для исследования

Чем опасна накипь?

Накипь обладает крайне низкой теплопроводностью.

Для примера: теплопроводность стали составляет 39 ккал/м*час*град, а теплопроводность накипи — всего 0,1 ккал/м*час*град. Разница почти в 400 раз!

А это значит, что при работе котла, чайника или тэна, им приходится затрачивать больше газа или электроэнергии на нагрев и испарение жидкости.

И это ещё полбеды.

Отложения напкипи выводят из строя оборудование и приборы, делая невозможными их эксплуатацию!

Накипь, осевшая на тенах стиральных машин, приводит к перегоранию нагревательного элемента. Накипь, осевшая в жиклёрах кофемашин, приводит к невозможности подачи жидкости. Накипь, забившая змеевик газового котла приводит к его протечке и дорогостоящему ремонту.

Отложения, возникающие при работе промышленных котлов могут привести к разрыву труб и аварийной ситуации!

По роду деятельности мы каждый день сталкиваемся с различными котлами и иногда удивляемся, насколько беспечны люди, эксплуатирующие газовые котлы большой мощности…

На снимке вы можете видеть, что труба котла полностью забита накипью. Вода не проходит через неё, труба постоянно перегрета и это может привести к взрыву! Однако такой котел продолжал работать…

На снимке: накипь в трубе котла ДЕ-10-14

Таким образом, возникновение накипи в нагревательном оборудовании, приводит к следующим негативным последствиям:

  • Перерасход топлива и электроэнергии;
  • Ускоренный износ и поломка оборудования;
  • Невозможность реализации технологического процесса;
  • Вероятность возникновения аварийной ситуации;

Виды накипи

Количество химических элементов, из которых образуется накипь, достаточно разнообразно и, как минимум, её классифицируют в следующие виды:

  • карбонатная накипь (углекислые соли кальция и магния — CaCO3, MgCO3);
  • сульфатная накипь (CaSO4);
  • силикатная накипь (кремнекислые соединения кальция, магния, железа, алюминия).

За 15 лет работы наша компания накопила значительное количество образцов накипи из разных уголков России. Нами было исследовано более 1000 образцов накипи и определён их химический состав.

На снимке: исходный образец накипи и её измельченный вид для проведения исследований

По результатам исследования мы выяснили, что содержание накипи, в подавляющем большинстве образцов содержит элементы:

Cа/Mg — от 87 до 96%

Fe — от 0,06 до 7,5%

SiO2 — от 0,02 до 1,8%

Можно ли по внешнему виду накипи узнать её химический состав?

На основании проведённых исследований более чем 100 образцов накипи, мы определили, что:

Однозначно определить химический состав накипи по её внешнему виду не представляется возможным!

Слишком много факторов влияет на цвет и консистенцию накипи — исходный состав воды, температура, давление, при которых образуется накипь. Кроме того, в накипи содержится ещё много элементов, которых очень мало по количеству, но они влияют на цвет и характер отложений.

Например:

На снимке: образцы накипи, имеющие различный цвет и консистенцию

На этих снимках представлены отложения, существенно отличающиеся по цвету и физической структуре. Удивительно, но эти отложения имеют практически одинаковый химический состав! Однако различные температуры и давления, при которых сформировались эти образцы накипи, привели к такой разнице в цвете и структуре!

При какой температуре образуется накипь?

Накипь начинает образовываться при температуре от 40°С и выше.

Достаточно подробную информацию о температуре и скорости образования накипи в устройствах приготовления горячей воды, мы нашли в книге Владислава Шафлика «Современные системы горячего водоснабжения», Киев, «Таки справы», 2010.

В таблице приведены данные о зависимости скорости образования накипи от жесткости воды и температуры.

На рисунке: данные о скорости образования накипи в зависимости от температуры

Как обнаружить?

Присутствие накипи при обогреве отопительным котлоагрегатом можно визуально, выполнив его демонтаж и частичную разборку. Однако в таком случае теряется гарантия и сервисное обслуживание. К тому же, необходимо привлечение специалистов, чтобы не допустить повреждений конструкции.

Другой способ обнаружения можно назвать косвенным, так как его можно реализовать без разбора самого котла. Для этого нужно выключить котёл, дождаться пока он остынет, а затем открутить гайку на трубе контура отопления, слить воду и изучить состояние внутренней поверхности. В случае присутствия накипи, будет виден белый налёт или соляные хлопья.

Предотвращение образования накипи

Умягчение

Основным способом, служащим для предотвращения образования накипи, является умягчение.

Под термином «умягчение» понимается процесс очищения воды от солей жесткости (Са и Mg), являющихся основной причиной образования накипи.

В процессе умягчения из воды удаляются ионы кальция (Ca) и магния (Mg). Это делается за счёт того, что воду пропускают через смолу или соль, содержащие в себе ионы натрия. При этом ионы кальция и магния из воды переходят в смолу или соль, а ионы натрия замещают их и переходят в воду. Таким образом происходит умягчение воды и снижается её общая жесткость.

Существуют следующие требования к жесткости воды:

Питательная вода паровых котлов и бойлеров (ГОСТ Р 55682.12-2013), ммоль/л <0,02

Существуют самые различные установки по умягчению, которые могут быть сконструированы и подобраны под исходную жесткость воды, кроме того, ступеней умягчения может быть несколько.

Также существуют установки обратного осмоса, которые могут выдавать из себя на выходе практически дистиллированную воду.

Противонакипные устройства

Отдельно нужно сказать о различных противонакипных устройствах, позиционирующихся как средство для предотвращения образования накипи. В нашей организации накоплен значительный опыт эксплуатации различных противонакипных устройств. Кроме того, мы сами выпускаем противонакипное устройство ЭКОФОР, предназначенное для предотвращения образования накипи и коррозии на паровых и водогрейных котлах.

На снимке: взрывозащищённое исполнение противонакипного устройства ЭКОФОР

В скором времени на нашем сайте мы разместим обобщение нашего опыта по эксплуатации противонакипных устройств. Сейчас же заметим, что они, к сожалению, не являются панацеей и причиной для отказа от существующих систем водоподготовки. Эти устройства должны применяться как дополнение к имеющимся системам умягчения. Эффективность этих устройств зависит от огромного количества факторов: габариты, параметры теплоносителя, химический состав воды и проч.

Причины выхода из строя емкостных водонагревателей

Основными причинами, сокращающими срок эксплуатации емкостного водонагревателя и приводящими к выходу из строя, являются коррозия, а также накипь, в результате которой снижается кпд прибора.

Перед тем как подробно рассматривать эти причины, необходимо остановиться на некоторых свойствах воды.

Вода – не только составляющая всех живых организмов и всего живого, это одновременно электролит (электропроводящий раствор) и универсальный растворитель.

При наличии даже небольшого электрического поля в воде емкостного нагревателя обязательно будут протекать гальванические токи. Вода как универсальный растворитель растворяет даже то, что не может растворить такая агрессивная среда, как кислота. И если в емкости нагревателя присутствуют хотя бы два различных металла, то оба металла будут передавать свои ионы электролиту, то есть воде.

Если бы электромагнитное поле было постоянным, а раствор электролита не пополнялся, то тогда наступил бы момент равновесия – раствор электролита стал бы насыщенным и все ионы перешли бы в раствор и на противоположно заряженные электроды. Но поскольку в емкостных водонагревателях вода обновляется, то коррозия ввиду постоянного переноса ионов в электролит будет всегда.

Очистка от накипи

Вторым направлением, обеспечивающим поддержание чистоты теплообменных аппаратов является их периодическая очистка от накипи. Это относится как к бытовым, так и промышленным агрегатам.

Существует несколько основных способов чистки оборудования от накипи. Перечислим основные из них: химическая промывка, механическая очистка, гидродинамическая очистка, электроразрядная очистка. Опишем, вкратце, данные методы.

Химическая промывка

Под химической промывкой подразумевают растворение накипи в оборудовании за счёт циркуляции в нём нагретого кислотного или щелочного раствора.

В общем виде создаётся замкнутый контур, в который входит: очищаемый объект, химический насос, промежуточный бак и кислотощелочестойкие шланги.

На снимке: химическая промывка бытового газового котла

Кислотный, например, раствор, подогретый до определенной температуры, циркулирует по замкнутому контуру в течении нескольких часов, за счёт чего производится растворение накипи и отмывка оборудования. Как правило, для химической промывки, используют соляную, серную, ортофосфорную и сульфаминовую кислоты.

Схема химической реакции при химической промывке оборудования сульфаминовой кислотой, например, выглядит следующим образом:

СаСО3+2NH2SO3H Ca(NH2SO3)2+H2O+CO2

Применяют, также, концентраты низкомолекулярных кислот (НМК). В ряде случаев, например для подготовки оборудования к пуску и отмывки его от производственных загрязнений: масел, ржавчины и окалины, используют щелочение каустической содой.

Химическая промывка незаменима для водогрейных водотрубных котлов типа КВГМ, ПТВМ, НР, ЗИО российского производства, а также жаротрубных котлов всех типов Viessman, Bosh, ICI, Loose и других производителей. Это обусловлено тем, что конструктивно, данные котлы, не имеют открытого доступа к своим трубкам, из-за чего единственно возможной становится их кислотная промывка.

Механическая очистка от накипи

Один из наиболее распространённых и известных способов очистки котлов и другого оборудования от накипи. Метод заключается в том, что в очищаемую трубу заводится механическая шарошка (бур, фреза), которая вращается в трубе за счёт электрического или воздушного привода. За счёт механического вращения, острые края шарошки достаточно эффективно счищают слой имеющейся накипи. Однако, при таком способе очистки, возможно ненормируемое воздействие шарошки на поверхность очищаемых труб, что в ряде случаев может приводить к утоньшению их стенок. Несмотря на это, метод имеет своих многочисленных сторонников, и наша компания имеет в наличии оборудование для механической очистки. Метод используют для очистки от накипи паровых котлов типа ДЕ, ДКВР, КЕ, ШБ, Е, трубок теплообменных аппаратов в сахарной, химической промышленности и т.д.

Гидродинамическая очистка от накипи

Принцип гидродинамической очистки основан на том, что вода, под высоким давлением, подаётся, посредством шланга высокого давления и форсунки, в трубу, что обеспечивает её отмывку от накипи. Данный метод эффективен для оборудования, у которого имеется открытый доступ к очищаемым трубам — теплообменников, бойлеров, паровых котлов Е, ДКВ, ДЕ, КЕ.

На снимке: гидродинамическая промывка теплообменника установкой высокого давления (ГУВД)

Спасение — в «жертвенном аноде»

Но как же совместить защиту бака от коррозии и тэна — от перегрева? Отслеживанием состояния магниевого анода, дополнительно оберегающего внутренний бак от ржавления и предупреждающего образование твердой накипи. Физическое его действие таково: накипь несет на себе отрицательный электрический заряд, поэтому притягивается к аноду, имеющего положительный заряд, гораздо сильнее, чем к тэну и стенкам бака.

А от коррозии анод уберегает тем, что при окислении разрушается «охотнее» и быстрее, чем железо, оттого его и называют «жертвенной» деталью, «берущей огонь на себя». Кроме того, при окислении магния образуется слаборастворимая соль (не путать с солями магния, поступающими из водопровода), оседающая тонким слоем на местах разрушения эмали или другого защитного покрытия стального бака и защищающая его от дальнейшей коррозии.

Проверять состояние анода нужно ежегодно. Менять его рекомендуется раз в год, но если водонагреватель используется с высокой интенсивностью, то замена может потребоваться чаще. Однако если у воды низкая степень жесткости, «жертвенный» анод изнашивается слабее, и его замена производится реже. Определение степени износа анода — только визуальная. Если на аноде появились глубокие раковины, а сам металл стал рыхлым, крошится от прикосновения, то пришла пора его замены.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]