Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.
Датчик DS18B20: характеристики
- диапазон измерения температуры -55 … +125 °C;
- погрешность сенсора не превышает 0,5 °C;
- разрешающая способность достигает 0,0625 °C;
- сенсор DS18B20 откалиброван при изготовлении;
- можно подключить до 127 датчиков на одной линии;
- для подключения требуется только 3 провода.
Подключение и распиновка термодатчика ds18b20
Цифровой датчик DS18B20 отправляет данные по Wire шине и может работать на одной линии с множеством других устройств. Каждый датчик имеет свой персональный 64-битный код, позволяющий микроконтроллеру Arduino общаться на одной шине сразу с несколькими сенсорами. Датчик преобразует температуру окружающей среды в цифровой код, т.е. для подключения не требуется дополнительного АЦП.
Датчик может быть выполнен в нескольких вариантах (смотри фото выше), от этого будет зависеть только схема подключения термодатчика к Arduino NANO или UNO. В первом случае необходимо использовать подтягивающий резистор на 4.7 кОм. Датчик, в виде готового модуля уже имеет резистор. Третий вариант — это датчик в герметичном корпусе, который можно смело использовать в горячей воде.
Источники неопределенности измерения температуры на объекте
В новом стандарте ГОСТ Р 8.625-2006 приведены правила отбраковки термометра сопротивления потребителем. В них установлено, что забраковать термометр можно только, если отклонение сопротивления термометра от НСХ лежит полностью вне диапазона, обусловленного расширенной неопределенностью измерения температуры в рабочих условиях. Поэтому становится очень актуальной проблема оценки неопределенности, возникающей при измерении температуры на объекте. Источники неопределенности измерения температуры промышленным термометром сопротивления можно разделить на источники, связанные с физическими условиями работы ТС и электрическим преобразованием сигнала:
теплопроводящие свойства данной конструкции термометра и монтажных элементов, перенос тепла излучением в окружающую среду, теплоемкость датчика температуры, скорость изменения измеряемой температуры, утечки тока (качество заземления), электрические шумы, точность измерителя или преобразователя сигнала.
Проверка датчиков температуры
Схема подключения модуля температурного контроля.
После того как подключается такой прибор, надо проверить, как он работает. Для этого потребуется обычный тестер для измерения, а для датчиков с сопротивлением 0 градусов до 100 Ом оптимальный диапазон измерения тестера до 200 Ом.
Проверка осуществляется при комнатной температуре, при этом можно определить, какие провода между собой соединены накоротко возле прибора, в большинстве случаев сопротивление между проводами намного меньше, чем датчика. Потом нужно проверить, что прибор рабочий, то есть выдает ли он то сопротивление, которое он должен выдавать при определенной температуре.
В конце необходимо убедиться в том, что прибор не замыкает на корпусе термопреобразователя, проверить это можно на мегаомном диапазоне сопротивления между корпусом датчика и проводами
Очень важно соблюдать технику безопасности, то есть контактов корпуса касаться нельзя, проводов тоже касаться не следует
Если тестер указывает на бесконечное сопротивление, значит, в корпус датчика попала вода или жир, функционировать такое устройство некоторое время может, но точность показаний будет постоянно снижаться, его показания будут плавать.
Как подобрать?
При выборе датчика температуры необходимо руководствоваться такими критериями:
- если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
- условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т.д.) должны соответствовать возможностям датчика;
- шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
- если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
- при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
- предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.
Таблица: температурные пределы датчиков термоэлектрического типа
Тип | Состав | Диапазон температур |
T | медь / константан | от -250 °C до 400 °C |
J | железо / константан | от -180 °C до 750 °C |
E | хромель / константан | от -40 °C до 900 °C |
K | хромель / алюмель | от -180 °C до 1 200 °C |
S | платина-родий (10 %) / платина | от 0 °C до 1 700 °C |
R | платина-родий (13 %) / платина | от 0 °C до 1 700 °C |
B | платина-родий (30 %) / платина-родий (6 %) | от 0 °C до 1 800 °C |
N | нихросил / нисил | от -270 °C до 1 280 °C |
G | вольфрам / рений (26 %) | от 0 °C до 2 600 °C |
C | вольфрам-рений (5 %) / вольфрам-рений (26 %) | от 20 °C до 2 300 °C |
D | вольфрам-рений (3 %) / вольфрам-рений (25 %) | от 0 °C до 2 600 °C |
Характеристики датчика lm35, описание
— питание: 2,7-5,5 Вольт; — потребляемый ток: 50 mkА; — диапазон температур: 10°C — 125°C — погрешность: 2 градуса.
Вместо lm35 можно использовать любой другой датчик температуры, например, TMP35, LM35, TMP37, LM335. Выглядит датчик как транзистор и поэтому его легко спутать, поэтому всегда внимательно читайте маркировку на радиоэлементах. Часто на основе данного датчика производители делают модули температуры для Ардуино (смотри фото выше). Если у вас только сам датчик lm35, то он имеет три вывода.
LM35 схема включения, как работает (datasheet)
Если посмотреть на температурный сенсор lm35 со стороны контактов и срезом вверх (как на рисунке), то слева будет положительный контакт для питания 2,7-5,5 Вольт, контакт по центру — это выход, а справа — отрицательный контакт питания (GND).
Подключение LMT01 к ATiny25
Рис. 13. Макет и схема подключения LMT01 к микроконтроллеру ATiny25
Рис. 14. Подключение LMT01 к микроконтроллеру ATiny2 | Рис. 15. Осциллограммы сигналов на выводе 7 ATiny25 |
На рисунке 13 представлена схема и макет подключения LMT01 к микроконтроллеру ATiny25 в корпусе SOIC-8. В данном случае использовался дополнительный ключ на биполярном транзисторе. Использование транзистора позволяет подавать сигнал на любой цифровой порт входа микроконтроллера без компаратора. На рисунке 14 показана схема в работе. Пусть вас не смущает большая отладочная плата MSP432 – на ней используется лишь преобразователь UART/USB. В терминал выводится значение температуры без дробной части, что упрощает и сокращает код программы. Осциллограммы сигналов с LMT01 можно посмотреть на рисунке 15. Программа для ATiny25 написана на Си (GCC) и использует счет импульсов по прерываниям со входа INT0. Тактовая частота – 8 МГц. Для отсчета временных интервалов задействован таймер TIMER1. Исходный проект “LMT01 demo programm for ATtiny25 MCU” и дополнительную информацию можно найти в архиве примеров кода для LMT01. |
Классификация видов термодатчиков
Выбор датчика зависит от того, в какой среде необходимо контролировать температуру: внутри котла, в помещении или в системе отопления. От правильности их выбора зависит эффективность и безопасность работы отопительного оборудования.
Датчик температуры для котла отопления классифицируется по следующим критериям:
- по способу определения температуры;
- по типу взаимодействия с термостатом.
Виды датчиков по способу определения температуры
По способу определения температуры датчики бывают:
- Дилатометрические, представляющие собой биметаллические пластины или спирали, принцип работы которых основан на тепловом расширении металлов или других типов твёрдых тел.
- Резистивные, имеющие сильную зависимость от температуры в определённом измеряемом диапазоне, которая проявляется в виде резких изменений электросопротивления.
- Термоэлектрические, представляющие собой термопары (сплавы двух разнородных проводников, например, хромель-алюмель), в которых при определённых температурных интервалах начинает индуцировать термо-ЭДС.
- Манометрические, принцип действия которых основан на изменении давления газа или жидкости в замкнутом объёме.
Дилатометрические датчики изготавливаются из материалов с высоким коэффициентом теплового расширения, которые реагируют на минимальные температурные колебания. Принцип их работы основан на замыкании либо размыкании электрических контактов. Для повышения их чувствительности и качества контакта в конструкциях используют магниты.
Резистивные термодатчики изготавливаются из специальных сплавов проводников или полупроводников. Конструктивно состоят из катушки с намотанным тонким медным, платиновым или никелевым проводом и керамического корпуса или полупроводниковых пластин, помещённых в пластиковый или стеклянный корпус.
Полупроводниковые резисторы бывают двух видов:
- термисторы, имеющие нелинейную температурную зависимость, характеризующуюся снижением сопротивления при нагреве;
- позисторы, также имеющие нелинейную зависимость от температуры, но отличающиеся от термисторов повышением сопротивления при нагреве.
Термоэлектрические датчики изготавливаются из двух специально подобранных разнородных металлов или сплавов, в точке контакта которых при нагреве индуцируется термо-ЭДС, величина которой пропорциональна разности температур двух спаев. При этом измеряемая величина не зависит от температуры, длины и сечения проводов.
Манометрические датчики позволяют определять температуру немагнитным способом без применения источников энергии, что позволяет их применять для дистанционных измерений. Однако их чувствительность на порядок хуже, чем у других термодатчиков, а также присутствует эффект инерционности.
Виды датчиков по способу взаимодействия с термостатом
Измерители температуры по типу взаимодействия с термостатом подразделяются на следующие виды:
- проводные, передающие данные на контроллер по проводам;
- беспроводные – высокотехнологичные современные устройства, передающие данные на определённой радиочастоте.
Проводной датчик температуры для котла
Примение
Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.
В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.
Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.
Особенности работы с датчиком:
Как и у похожего аналогового датчика LM35, на выходе формируется напряжение пропорционально температуре по шкале Цельсия, величина напряжения также 10.0 mV на 1°C, но в отличии от LM35, где отсчет начинается от 0°C и при 25°C датчик формирует напряжение 250mV, TMP36 ведет отсчет от -50°C, а при 25°C на выходе датчика будет 750mV.
TMP36 лишен основного недостатка LM35 при совместном использовании с Arduino, невозможность измерения отрицательных температур, но недостатки все таки пристукивают. При использовании встроенного в микроконтроллер источника опорного напряжения 1,1 вольт, максимальная температура датчика ограниченна 60°C но это всё еще пригодно для домашних или уличных термометров.
Крайне не рекомендуется использовать в качестве опорного напряжения для АЦП, напряжение питания или напряжение от встроенного стабилизатора на 3,3 вольта, подключенное на вход AREF, стабильность тех напряжений крайне низкая, что будет негативно сказываться на точности показаний датчика. Правильным решением будет использование встроенного источника опорного, а если верхняя граница в 60°C не достаточна, либо внешний источник опорного, например MAX6125, либо использовать другой, более подходящий, датчик температуры.
Признаки поломки
Как и неисправности любого устройства в автомобиле, выход со строя сенсора температуры охлаждающей жидкости может привести к нежелательным последствиям.
При движении машины поломка может проявляться как:
- проблематичный запуск мотора в холодную погоду;
- нетипичные звуки от выхлопных газов только запущенного мотора;
- при достижении максимальной температуры мотор глохнет;
- не запускается вентилятор охлаждения при нагревании ДВС;
- превышение расхода топлива сверх установленной нормы.
Современные авто выводят данные о нарушении температуры охлаждающей жидкости на дисплей. Причиной неисправности может стать как механическая поломка (сорванная резьба, растрескивание корпуса, перегорание термистора), так и электрическая (короткое замыкание в измерительной цепи или обрыв провода). Чтобы убедиться в правильности вашего предположения, проверьте датчик, и, при необходимости замените его новым.
Подключение датчика движения
Без данного датчика не обходится ни одна серьёзная охранная система. Инфракрасный датчик — базовый элемент обнаружения присутствия теплокровных.
Также при помощи PIR-датчиков чрезвычайно удобно управлять освещением в зависимости от нахождения рядом человека. Инфракрасные или пироэлектрические датчики просты по внутреннему устройству и недороги. Они крайне надёжны и редко выходят из строя.
Основа датчика — пироэлектрик или диэлектрик, способный создавать поле при изменении температуры. Они устанавливаются попарно, а сверху закрываются куполом с сегментами в виде обычных линз или линзой Френеля. Это позволяет сфокусировать лучи от разных точек проникновения.
При отсутствии излучающих тепло тел в помещении у каждого элемента одинаковая попадающая доза излучения, соответственно, одинаковое напряжение на выходах. При попадании в зону «обзора» датчиков живого теплокровного нарушается равновесие и появляются импульсы, которые и регистрируются.
HC-SR501 — наиболее распространённый и популярный датчик. Он имеет два подстроечных переменных резистора:
- один — для регулировки чувствительности и размера обнаруживаемого объекта,
- второй — для регулировки времени срабатывания (времени генерации импульса после обнаружения).
Схема подключения стандартна и не вызовет затруднений.
Правильная эксплуатация
При эксплуатации термодатчиков строго должна выполнятся инструкция завода-изготовителя котла и измерительного устройства. Для того чтобы обеспечить точность измерений чувствительный элемент должен обладать наибольшим контактом с измеряемой средой, кроме того потребуется своевременно проводить обслуживание измерительного устройства и его калибровку по срокам обозначенным инструкцией.
Специфика эксплуатации ДТ с соблюдением техники безопасности:
- ДТ устанавливается в ту среду, которая должна контролироваться и регулироваться по теплообмену;
- при установке должны быть исключены все негативные факторы, способные изменить показание датчика;
- запрещается эксплуатировать измеритель, с поврежденной изоляцией;
- запрещено выполнять самостоятельную разборку датчика;
- все ремонтные и обслуживающие операции выполняют при полном отключении сетей измерителя от напряжения 220В.
Устройство и принцип работы
Принцип работы термодатчиков основан на измерении сопротивления, давления, физических размеров (тепловое расширение), термо-ЭДС, которые имеют сильную зависимость от температуры в конкретном диапазоне. Данные о величине нагрева могут быть получены на основе проведённых калибровок датчиков при выполнении пересчёта по соответствующим формулам.
В автоматических термостатах эти формулы заложены в управляющую программу, а в механических – установлены специальные устройства, которые каким-либо простым способом регулируют режимы работы, например, механические или электрические реле, которые замыкают или размыкают нужные контакты.
Термодатчики имеют относительно простую конструкцию – небольшой корпус с креплениями, внутри которого находится сам датчик. Они могут быть герметичными или открытыми, в зависимости от способа детектирования. Для передачи измеренных данных они могут оснащаться беспроводными датчиками или подключаться по проводному соединению.
Основные типы
По виду основной из составляющих ТПИ — чувствительного элемента или контроллера, различают четыре основных его типа:
- Контактный ТПИ. При изменении температурного режима установленный контакт или электрическая цепь размыкается, специальный шлейф рвется и служит причиной срабатывания звукового сигнала. Самые простые, как правило, отечественные модели, представляют собой замкнутый контакт из двух проводников, упакованный в пластмассовый контейнер. Более сложные имеют термочувствительный полупроводник с отрицательным сопротивлением. Если температурная отметка окружающей среды возрастет, сопротивление упадет, и по цепи пойдет контролируемый ток. Как только он достигнет определенного показателя, оповещатель сработает.
- В электронный сенсор вмонтированы сенсоры, которые находятся внутри кабеля, как только температура достигает определенного порога, сопротивление электротока в кабеле меняется, что передается в управление контрольного устройства. Высокочувствителен. Принцип устройства достаточно сложный.
- Оптический извещатель работает на основе оптико-волоконного кабеля. От повышения температуры изменяется оптическая проводимость, что ведет к звуковому оповещению.
- Металлическая трубка с газом, герметично заполненная, необходима для механического ТПИ. Воздействие температуры на любой участок трубки приведет к изменению ее внутреннего давления и срабатыванию сигнала. Признан устаревшим.
- Другие типы. Полупроводниковые имеют специальное покрытие с отрицательным коэффициентом температуры, электромеханические состоят из проводов под механическим напряжением, покрытых термочувствительным веществом.
Библиотека OneWire для работы с DS18B20
DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. Скачать OneWire можно здесь. Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include
Основные команды библиотеки OneWire:
- search(addressArray) – ищет температурный датчик, при нахождении в массив addressArray записывается его код, в ином случае – false.
- reset_search() – производится поиск на первом приборе.
- reset() – выполнение сброса шины перед тем, как связаться с устройством.
- select(addressArray) – выбирается устройство после операции сброса, записывается его ROM код.
- write(byte) – производится запись байта информации на устройство.
- write(byte, 1) – аналогично write(byte), но в режиме паразитного питания.
- read() – чтение байта информации с устройства.
- crc8(dataArray, length) – вычисление CRC кода. dataArray – выбранный массив, length – длина кода.
Важно правильно настроить режим питания в скетче. Для паразитного питания в строке 65 нужно записать ds.write(0x44, 1);
Для внешнего питания в строке 65 должно быть записано ds.write(0x44).
Write позволяет передать команду на термодатчик. Основные команды, подаваемые в виде битов:
- 0x44 – измерить температуру, записать полученное значение в SRAM.
- 0x4E – запись 3 байта в третий, четвертый и пятый байты SRAM.
- 0xBE – последовательное считывание 9 байт SRAM.
- 0х48 – копирование третьего и четвертого байтов SRAM в EEPROM.
- 0xB8 – копирование информации из EEPROM в третий и четвертый байты SRAM.
- 0xB4 – возвращает тип питания (0 – паразитное, 1 – внешнее).
Преимущества и недостатки
Как любой другой прибор, терморегулятор для подогрева полов имеет ряд преимуществ и недостатков.
Среди главных достоинств прибора можно выделить:
- Простоту управления.
- Доступную ценовую политику.
- Экономию затрат на оплату электроэнергии.
- Эргономические качества устройства.
- Лёгкость проведения установки.
- Наличие возможности автоматически настроить систему включения и отключения тёплого пола.
- Наличие возможности регулировать температурный режим.
- Высокое качество оборудования.
- Надёжность работы регулятора.
- Установленную функциональную память, которая обеспечивает сохранение настройки в случаях отключения электроэнергии.
Для каждого вида пола находится свой тип термостата.
Подключение и настройка датчика уличной температуры
Подключение температурного датчика производят только к отключенному от электроснабжения газовому котлу. Для осуществления данного процесса используют кабель 2*0,5 мм длиной менее 30 м. Его протягивают через отверстие в стене и подключают к к клеммной колодке прибора без соблюдения полярности. Провод изолируют при помощи специальной муфты.
Датчик уличной температуры подключают к электронной плате газового котла. У каждой модели место подключения может отличаться, его определяют по схеме платы управления, которая имеется в инструкции к агрегату.
Температуру в комнате можно регулировать в диапазоне 9-30ºС.
Уличный датчик регулирует температуру теплоносителя по методике, где фигурируют такие данные:
- Ti – температура воды на выходе из котла;
- Tкомн– заданное значение комнатной температуры;
- Te– показания датчика уличной температуры;
- K– коэффициент изоляции, настроенный параметром P6.
Температура теплоносителя рассчитывается по следующей формуле:
Ti=[( Tкомн — Te )·(K/10)]+ Tкомн.
Например, для поддержания температуры в помещении на уровне 23°C при коэффициенте изоляции 10 и температуре на улице -10°C, теплоноситель должен быть нагрет до 56°C.
Самым сложным в этом расчете является подбор коэффициента изоляции, который определяется опытным путем. Его настройка выполняется так:
- на газовом котле переводят регулятор температуры ГВС на максимум, а отопление – на минимум;
- рукоятку температурного контура переводят в течение 3 секунд 3 раза в сторону увеличения;
- на ЖК-дисплее начинает мигать код параметра настройки Р6;
- значение коэффициента выбирают, поворачивая регулятор контура отопления;
- чтобы увидеть значение выбранного параметра нажимают кнопку reset;
- чтобы изменить показатель, следует зажать reset на 2 сек.;
- на экране появится заводское значение 20; можно выбрать параметр в диапазоне от 5 до 35;
- фиксируют выбранное значение нажатием reset в течение 2 секунд;
- чтобы выйти из режима настройки, регулятор отопления 3 раза поворачивают в течение 3 мин.
При выборе коэффициента теплоизоляции следует учитывать, что, чем значение выше, тем хуже утеплено здание.
Чтобы датчики наружной температуры для газовых котлов работали четко и эффективно, важно найти подходящее место для его монтажа и правильно выполнить настройки. Ошибки приведут к тому, что агрегат будет расходовать топливо не экономно или температура в доме не будет поддерживаться на должном уровне
Неисправности
Высокотемпературные условия эксплуатации датчиков, особенно при нестабильных режимах работы котла, приводят к тому, что первичные измерители выходят из строя. Котел будет часто срабатывать на отключение при периодическом отказе термопары или диагностика работы котла будет сигнализировать ошибку, а приборы могут показывать «обрыв цепи».
Шаги по устранению неисправности датчика температуры:
- Чтобы отремонтировать ДТ проверяю правильность выводов -ve и + ve
- Убеждаюсь, что установлен кабель в соответствии с рекомендациями завода-изготовителя.
- Проверяю, отсутствие внешних источников тепла, способных исказить показания ДТ.
- Проверяю настройку регулятора температуры.
- Диагностирую возможные ошибки обрыва.
- Осматриваю датчик на предмет повреждений.
- Проверяю неисправную термопару мультиметром.
Датчик температур — основной измеритель в системе безопасности и управления котлом. Он выполняет не только защитную функцию, но и способствует до 30 % экономии тепловой энергии и расхода газа, поскольку не допускает режимов перегрева и тактования котла.
Современные российские требования по эксплуатации бытовых котлов обязывают всех производителей котлов устанавливать ДТ в систему безопасности и защиты, лучше если эта работа будет выполняться непосредственно на заводе.
Вводная информация
Если раньше существовали специализированные конструкторы с ограниченными наборами функций и жёстко заданными параметрами, то сегодняшнее разнообразие конструкторов просто поражает: настоящие микропроцессорные системы, собираемые на коленке, имеют практически неограниченный функционал. Богатая фантазия, широкая элементная база, большие комьюнити фанатов и инженеров и поддержка производителем — основные отличительные особенности таких востребованных рынком наборов для робототехники.
Один из них и наиболее популярный, что естественно, — Ардуино. Конструктор моментальной сборки электронных автоматических устройств любой степени сложности: высокой, средней и низкой. Эту платформу называют иначе «physical computing» за плотное взаимодействие с окружающей средой. Печатная плата с микропроцессором, открытый программный код, стандартные интерфейсы и подключение датчиков к Ардуино — слагаемые его популярности.
Система Ардуино — плата, которая объединяет все нужные компоненты, обеспечивающие полный цикл разработки. Сердце этой платы — микроконтроллер. Он обеспечивает управление всей периферией. Датчики, подключаемые к системе, позволяют системе «общаться» и взаимодействовать с окружением: анализировать, отмечать изменять.
Блиц-советы
- Обязательно наличие нормального сечения кабеля терморегулятора. При наличии проводки старых времён, гораздо безопаснее установить отдельную линию, которая пойдёт от специально отведённого автомата.
- При использовании терморегулятора для обогревания нескольких помещений одновременно, следует помнить, что регулирование температурного режима возможно будет исключительно в комнате, где располагается датчик. По этой причине возможны проблемы с перепадами температурного режима.
- Категорически не рекомендуется применение одного регулятора в помещениях с противоположными условиями эксплуатирования (либо при большом перепаде температур). Добиться желаемого обогрева во всех комнатах станет невозможным.
- Лучшим вариантом станет использование отдельного термостата на каждую комнату с наличием тёплых полов.
housetronic.ru
Примеры работы для Arduino
Один датчик
Рассмотрим простой пример — подключения одного датчика.
Сенсор подключается к управляющей плате через один сигнальный пин. При подключении к Arduino в компактном формфакторе, например Arduino Micro или Iskra Nano Pro, воспользуйтесь макетной платой и парочкой нажимных клеммников.
Между сигнальным проводом и питанием установите сопротивление 4,7 кОм.
При коммуникации сенсора со стандартными платами Arduino формата Rev3, Arduino Uno или Iskra Neo, используйте Troyka Slot Shield совместно с модулем подтяжки.
Код программы
Выведем температуру сенсора в Serial-порт.
simple.ino // библиотека для работы с протоколом 1-Wire #include // библиотека для работы с датчиком DS18B20 #include // сигнальный провод датчика #define ONE_WIRE_BUS 5 // создаём объект для работы с библиотекой OneWire OneWire oneWire(ONE_WIRE_BUS); // создадим объект для работы с библиотекой DallasTemperature DallasTemperature sensor(&oneWire); void setup(){ // инициализируем работу Serial-порта Serial.begin(9600); // начинаем работу с датчиком sensor.begin(); // устанавливаем разрешение датчика от 9 до 12 бит sensor.setResolution(12); } void loop(){ // переменная для хранения температуры float temperature; // отправляем запрос на измерение температуры sensor.requestTemperatures(); // считываем данные из регистра датчика temperature = sensor.getTempCByIndex(); // выводим температуру в Serial-порт Serial.print(«Temp C: «); Serial.println(temperature); // ждём одну секунду delay(1000); }
Серия датчиков
Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.
Добавим к предыдущем схемам подключения ещё по паре датчиков в параллель.
Код программы
Просканируем все устройства на шине и выведем температуру каждого сенсора отдельно в Serial-порт.
multipleSensors.ino // библиотека для работы с протоколом 1-Wire #include // библиотека для работы с датчиком DS18B20 #include // сигнальный провод датчика #define ONE_WIRE_BUS 5 // создаём объект для работы с библиотекой OneWire OneWire oneWire(ONE_WIRE_BUS); // создадим объект для работы с библиотекой DallasTemperature DallasTemperature sensors(&oneWire); // создаём указатель массив для хранения адресов датчиков DeviceAddress *sensorsUnique; // количество датчиков на шине int countSensors; // функция вывода адреса датчика void printAddress(DeviceAddress deviceAddress){ for (uint8_t i = ; i 8; i++){ if (deviceAddressi 16) Serial.print(«0»); Serial.print(deviceAddressi, HEX); } } void setup(){ // инициализируем работу Serial-порта Serial.begin(9600); // ожидаем открытия Serial-порта while(!Serial); // начинаем работу с датчиком sensors.begin(); // выполняем поиск устройств на шине countSensors = sensors.getDeviceCount(); Serial.print(«Found sensors: «); Serial.println(countSensors); // выделяем память в динамическом массиве под количество обнаруженных сенсоров sensorsUnique = new DeviceAddresscountSensors; // определяем в каком режиме питания подключены сенсоры if (sensors.isParasitePowerMode()) { Serial.println(«Mode power is Parasite»); } else { Serial.println(«Mode power is Normal»); } // делаем запрос на получение адресов датчиков for (int i = ; i countSensors; i++) { sensors.getAddress(sensorsUniquei, i); } // выводим полученные адреса for (int i = ; i countSensors; i++) { Serial.print(«Device «); Serial.print(i); Serial.print(» Address: «); printAddress(sensorsUniquei); Serial.println(); } Serial.println(); // устанавливаем разрешение всех датчиков в 12 бит for (int i = ; i countSensors; i++) { sensors.setResolution(sensorsUniquei, 12); } } void loop(){ // переменная для хранения температуры float temperature10; // отправляем запрос на измерение температуры всех сенсоров sensors.requestTemperatures(); // считываем данные из регистра каждого датчика по очереди for (int i = ; i countSensors; i++) { temperaturei = sensors.getTempCByIndex(i); } // выводим температуру в Serial-порт по каждому датчику for (int i = ; i countSensors; i++) { Serial.print(«Device «); Serial.print(i); Serial.print(» Temp C: «); Serial.print(temperaturei); Serial.println(); } Serial.println(); // ждём одну секунду delay(1000); }
Подключение LMT01 к MSP430
Рис. 19. Схема подключения LMT01 к MSP430G2553
Рис. 20. Подключение LMT01 к Launchpad MSP-EXP430G2
Схема подключения LMT01 к недорогой отладочной плате Launchpad MSP-EXP430G2 приведена на рисунке 19. Для подключения использовался вариант c внутренним компаратором, подсчет импульсов производился с помощью таймера. Все это существенно упрощает как схему подключения, так и код программы. Макет устройства приведен на рисунке 20 (на фото питание на LMT01 подается с P2.4, однако в прилагаемом примере для этого используется линия P1.6). Программа имеет множество комментариев на русском языке и будет понятна даже начинающему разработчику. Значение температуры и «сырые» данные (число импульсов) выводятся в UART на скорости 9600 бит/с. Результат работы программы приведен на рисунке 21.
Рис. 21. Измерение температуры с помощью LMT01
В архиве можно найти код программы для работы LMT01 совместно с MSP430G2553.
Подключение температурного датчика для котла
Все датчики температуры должны подключаться к термостату или специальному управляющему контроллеру, отвечающего за рабочие режимы котла. При этом необходимо тщательно изучить инструкцию по подключению, чтобы совпали требования к подсоединению с техническими характеристиками датчиков.
Обычно рекомендуется приобретать датчики, которые рекомендует производитель котла. Связано это с их высокой совместимостью и гарантией правильной работы
Если в продаже таковые отсутствуют, то нужно обращать внимание на сертифицированные аналоги
Подключение наружного датчика
Датчик наружной температуры для котла монтируется на внешней стороне стены дома с обязательным выполнением следующих требований:
- необходимо исключить попадание прямых солнечных лучей на его поверхность;
- поверхность контакта стены должна быть неметаллической;
- прокладка кабеля в местах с повышенной влажностью, при наличии химических или биологических факторов, которые могут повредить изоляцию, запрещена;
- высота расположения датчика на стене должна быть на уровне 2/3 высоты дома, если количество этажей до трёх, либо между вторым и третьим этажом, если здание многоэтажное;
- необходимо исключить негативные факторы, снижающие чувствительность или точность измерения датчика.
Наружные датчик температуры для котла
Подключение термодатчика осуществляется при выключенном электропитании котла. Для соединения применяется цельный кабель с сечением жил 0,5 мм2 и длиной до 30 м. Места подключения проводов к котлу и датчику должны быть загерметизированы и изолированы.
При подсоединении важно соблюдать полярность, в зависимости от типа термодатчика. Если участок кабеля проходит по улице, то его следует защитить специальной гофрированной трубкой
После выполнения всех монтажных работ, необходимо проверить их качество, а затем настроить термостат. Если были допущены ошибки, то их следует исправить, иначе велика вероятность поломок котла или недостаточного обогрева помещений.
Подключение комнатного датчика
Датчик комнатной температуры для котла монтируется на внешней стене здания с внутренней стороны помещения. Требования по выбору места следующие:
отсутствие поблизости источников тепла или холода; постоянный доступ к пространству помещения (отсутствие предметов декора, интерьера, которые могут заслонять датчик и влиять на достоверность измерений); высота от пола должна составлять 1,2-1,5 м; при монтаже электрических датчиков важно, чтобы поблизости не было источников электромагнитного излучения: проложенной электропроводки, установленных мощных электроприборов и т. п.. Комнатный датчик температуры для котла
Комнатный датчик температуры для котла
Способ подключения аналогичный методу для внешнего термодатчика, выполняется в соответствии с требованиями производителя котла. Может монтироваться в специально подготовленное углубление в стене или на поверхность, главное, чтобы чувствительный элемент не был закрыт снаружи.
Подключение датчика для газового котла
Беспроводной датчик температуры для газового котла монтируется непосредственно на контроллер или на газовый клапан. Проводные термодатчики присоединяются способом, который предусмотрен производителем и описан в инструкции.
Подключение водяного термодатчика
Датчик температуры воды для котла в многоконтурной системе устанавливается на поверхность возвратной трубы отопления либо внутрь неё, а также допустима установка на циркуляционный насос. Такое положение обусловлено необходимостью исключения попадания обратно в котёл теплоносителя с высокой температурой.
В одноконтурной или однотрубной системе вариант установки датчика на возвратную трубу с теплоносителем запрещён. В случае повышения нагрева циркуляция перекроется и возникнет значительный градиент температур между дальними и ближними комнатами.
Разновидности
Среди популярных на рынке марок/моделей пожарных и охранных датчиков следует выделить следующие изделия (на момент написания материала):
- ИП 22051TEI-63-IV – модель адресно-аналогового комбинированного (тепло/дым) извещателя от предприятия «Сфера безопасности». Площадь защиты – 176 кв. м. Размеры – диаметр 102 мм, с высотой 61 мм, весом всего 88 г.
- ИП 212/101-Барк – это комбинированный извещатель с тепловым и дымовым датчиками, совмещенными в одном корпусе. Производитель – НПО ПАС. Электропитание по ШС 24 В. Защита – IP Температурный диапазон эксплуатации – от – 30 до + 55℃. Максимальное количество извещателей в ШС – 63 шт. Размеры – диаметр 100 мм, высота 78 мм при массе в 0,2 кг, что не превышает габариты и вес традиционного оптического дымового извещателя.
- Существуют также модели изделий под аббревиатурой ИП 212/101 от других производителей – это ЕСО1002, он же ИП 212/101-2-А1R от ; ИП 212/101-11-PR от ; «Аврора-ДТР» (ИП 21210/10110-1-А1) от изготовителя «Аргус-Спектр», работающий по радиоканалу с ПКП на дальности до 600 м, а также ряда других предприятий со сходными техническими характеристиками.
- «С2000-ИПГ» – это комбинация газового, определяющего содержание в воздушной среде угарного газа, и максимально-дифференциального теплового датчиков, совмещенных в компактном корпусе адресно-аналогового пожарного извещателя, размеры которого – диаметр 100 мм, высота 47 мм. Питание – по ШС 12 В. Тип монтажа – потолочный. Производится .
- ИПК-3.3/ИПК-3.5 – четырех- и двухпроводные комбинированные (дым/тепло) извещатели от украинской , работающие по 12/24 В шлейфу сигнализации.
- MSD-300 – радиоканальный комбинированный дымо-тепловой извещатель, TSD-1 – аналогичное устройство, с питанием 12 В по шлейфу сигнализации от компании Satel из Польши.
- Panasonic 4400 – мультисенсорный дымовой извещатель, который благодаря автоматической настройке можно устанавливать в чистых, дымных, горячих помещениях.
- «Сокол-2» – это комбинированный охранный извещатель, предназначенный для обнаружения незаконного доступа в закрытые помещения. Его официальная аббревиатура – ИО 414-1. В нем реализован двойной контроль объема охраняемого пространства по двум параметрам – ИК/СВЧ, т.е. регистрация изменения ИК-излучения после пересечения человеком контрольных зон, сформированных оптическим датчиком, а также изменения в электромагнитном поле, создаваемом СВЧ-сенсором. При срабатывании в любой последовательности они выдают сигнал тревоги, размыкая контакты выходного реле. Дальность действия – 12 м. Способ установки – настенный. Размеры – 135х70х50. Может эксплуатироваться при температуре от – 30 до + 50℃.
- «Сокол-3» – это модель аналогичного ИК/СВЧ охранного объемного извещателя, предназначенная для установки на потолок защищаемого помещения. Размеры – диаметр 90 мм, с высотой 35 мм. Дальность обнаружения датчиков – 5 м. Оба охранных извещателя производятся отечественной .
- Семейство охранных и радиоканальных пожарных извещателей с торговой маркой «Астра» – продукция российской . Среди них комбинированные ИО: «Астра-551» – ИК/радиоволновой охранный извещатель с дальностью действия 10 м, углом зоны обнаружения 90; «Астра-641» – с ИК/ультразвуковым датчиком.
Выбор довольно велик, нет проблем выбора комбинированного пожарного и охранного извещателя, в т.ч. одного производителя; т.к. ведущие компании, изготавливающие средства ОПС, как правило, изготавливают линейки моделей обоих видов, что обеспечивает простоту проектирования по готовым схемам, полную совместимость, надежность эксплуатации оборудования, снижение энергопотребления, упрощение монтажных работ.
Разновидности комбинированных пожарных извещателей
Как правильно установить датчик наружной температуры?
Термодатчики устанавливают на наружной стене дома
При размещении важно выполнять определенные требования:. …
- Желательно устанавливать датчик на стене, которая обращена в сторону севера или северо-востока.
- На сенсор не должны падать солнечные лучи.
- Нельзя прикреплять устройство к поверхности из металла.
- Датчик не должен контактировать с источниками тепловой энергии, ветра или холода.
- Сенсор должен монтироваться к ровной поверхности с помощью анкерных болтов.
Также существуют правила размещения в зависимости от количества этажей в доме:
- Если здание имеет до 3-ех этажей, датчик устанавливают на уровне 2/3 от его высоты.
- Если в доме более 3 этажей, рекомендуется размещать устройство между 2-ым и 3-им этажами.
После того как место выбрано, переходят к монтажу уличного датчика. Чтобы получить доступ к крепежным отверстиям, откручивают защитную пластиковую крышку прибора. Затем к датчику подключают два провода. Пробивают перфоратором в стене отверстие под крепеж, затем вкручивают туда дюбель для крепления.
Каким проводом можно подключать комнатные термостаты?
Еще одним немаловажным моментом в подключении термостата является выбор провода. Обычно, сечение и количество жил указываются в инструкции на конкретное изделие. Кроме этого надо помнить о расстоянии от термостата до котла или хаба, которому подключается термостат — если выход на термостате потенциальный, то длина провода может оказать существенное влияние на работу автоматики. Связано это с падением напряжения на проводе. Чтобы его уменьшить, стоит взять провод максимально большого сечения.
Чаще всего для подключения механических термостатов используют двухжильный провод с сечением 0,5 или 0,75 «квадратов». Для электронных, как я описывал выше, важно учитывать длину провода. Чем длиннее провод, тем больше должно быть сечение (обычна сечение не превышает 1,5 «квадрата»). Но превышать длину провода в 100 метров, производители не советуют, хоть это и не оговаривается в паспортах и инструкциях на изделия.
Протокол датчика DHT
Выходом датчика является цифровой сигнал. Температура и влажность передаются по одному сигнальному проводу (). DHT11 общается с принимающей стороной, такой как Arduino по собственному протоколу. Коммуникация двунаправлена и в общих чертах выглядит так:
- Микроконтроллер говорит о том, что хочет считать показания. Для этого он устанавливает сигнальную линию в 0 на некоторое время, а затем устанавливает её в 1
- Сенсор подтверждает готовность отдать данные. Для этого он аналогично сначала устанавливает сигнальную линию в 0, затем в 1
- После этого сенсор передаёт последовательность 0 и 1, последовательно формирующих 5 байт (40 бит). В первых двух байтах передаётся температура, в третьем-четвёртом — влажность, в пятом — контрольная сумма, чтобы микроконтроллер смог убедиться в отсутствии ошибок считывания
Благодаря тому, что сенсор делает измерения только по запросу, достигается энергоэффективность: пока общения нет, датчик потребляет ток 100 мкА.
Техника безопасности
- Устройство разбирать нельзя, все работы необходимо проводить в резиновых перчатках, если оборудование повреждено, если на кабелях электропитания отсутствует изоляция или она повреждена, то установку осуществлять нельзя. Нужно помнить о том, что с электричеством шутки плохи, и если не соблюдать технику безопасности, все может закончиться очень плохо.
- Такие приборы могут осуществлять помехи, они отрицательным образом могут сказаться на работе других устройств, которые находятся поблизости. Это нужно учитывать, поэтому все аппараты, которые работают на электричестве, во время проведения работ должны быть отключены.
- Если возникли какие-то сложности, необходимо, чтобы все работы осуществляли квалифицированные специалисты. Используя приведенные выше инструкции, все можно сделать самостоятельно, однако если возникли проблемы, то лучше не рисковать и доверить их устранение специалистам.
- После завершения всех работ нужно убедиться в том, что прибор прочно закреплен в определенном месте. Этот фактор является очень важным, забывать об этом не стоит.
- При осуществлении таких работ нужно не забывать о том, что оборудование обладает крайней чувствительностью к воде и к влажности.
- Любые работы, связанные с электричеством, категорически запрещены во время грозы.
Когда устройство надлежащим образом подключено, необходимо время от времени осуществлять проверку того, насколько качественно оно функционирует. Таким образом, ничего сложного в процессе нет, и если все делать согласно инструкции, это займет небольшое количество времени, а качество работы будет отличным.
Следует отметить, что качество такого прибора должно быть высоким, поэтому не стоит на нем экономить и покупать подозрительный товар по ценам ниже, чем в фирменных магазинах. Сэкономить на этом не получится, так как такой аппарат в скором времени выйдет из строя.
1poteply.ru
Подключение цифрового датчика влажности, температуры
Два популярных датчика — DHT11, DHT22 — предназначены для замера влажности и температуры (про подключение датчика температуру мы еще поговорим ниже отдельно); недорогое решение, отлично подходят для простых схем и обучения. Термистор, ёмкостной датчик — основа DHT11 и DHT22. Внутренний чип выполняет АЦП, давая на выходе «цифру», которую поймёт любой микроконтроллер.
DHT11 отличается от DHT22 диапазоном измерения и частотностью опроса:
- влажность — 20-80% для DHT11 и 0-100% для DHT22;
- температура — 0°C до +50°C для DHT11 и -40°C до +125°C для DHT22;
- опрос — ежесекундный для DHT11 и раз в две секунды для DHT22.
Оба датчика DHT имеют стандартных 4 вывода:
- Питание датчиков.
- Шина данных.
- Не задействован.
- Земля.
Вывод данных и питания требует подключения между ними резистора 10 кОм.
Для DHT-датчиков разработана библиотека DHT.h. При загрузке скетча в контроллер монитор порта должен отобразить текущие значения влажности, температуры. Проверить работоспособность просто — достаточно подышать на датчик и взять его в руки: температура и влажность должны поменяться.
Возможен вывод значений на экран LCD 1602 I2C, если включить его в систему.
При помощи этих датчиков можно соорудить автоматизированную систему полива почвы на открытом воздухе, в теплице и даже на подоконнике. Или организовать систему сушки ягод — последние обдуваются или нагреваются в зависимости от влажности ягод.
Также некоторые акватеррариумы требуют особых условий влажности, которые легко контролировать при помощи DHT1 и DHT22.
3Считывание данных с сенсора DHT11 при помощи Arduino
Давайте пойдём таким путём: скачаем библиотеку для датчика DHT11, установим её стандартным способом (распаковав в директорию libraries среды разработки для Arduino).
Напишем вот такой простенький скетч. Он будет выводить в последовательный порт компьютера каждые 2 секунды сообщения об относительной влажности и температуре, считанные с датчика DHT11.
#include // подключаем библиотеку dht11 sensor; // инициализация экземпляра датчика #define DHT11PIN 8 // вывод 8 будет шиной DATA
void setup() {
Serial.begin(9600);
}void loop() {
int chk = sensor.read(DHT11PIN); Serial.print(«h=»); Serial.print(sensor.humidity); Serial.print(«%t»); Serial.print(«t=»); Serial.print(sensor.temperature); Serial.println(«C»); delay(2000);
}
Загрузим этот скетч в Arduino. Подключимся к Arduino с помощью монитора COM-порта и увидим следующее:
Данные о температуре и влажности, полученные с датчика DHT11
Видно, что данные и о влажности, и о температуре считываются и выводятся в терминалку.
Подключение датчика давления
Часто в деле предсказания погоды или определения высоты подъёма над уровнем моря требуется решить задачу измерения давления. Здесь на помощь приходят электронные барометры на технологии МЭМС: тензорометрический или пьезорезизстивный метод, связанный с переменностью сопротивления прибора при приложении деформирующих материал сил.
Наиболее популярен датчик BMP085; помимо барометрического давления он регистрирует и температуру. Ему на смену выпустили BMP180, он обладает теми же характеристиками:
- Чувствительность в диапазоне: 300-1100 гПа (если в метрах — 9000 — 500 м над уровнем моря );
- Разрешение : 0,03 гПа или 0,25 м;
- Рабочая температура датчика -40 +85°C, точность измерения в указанном диапазоне — ±2°C;
- Подключение по стандарту i2c;
- V1 использует 3.3 В для питания и логики;
- V2 использует 3.3-5 В для питания и логики.
Подключение датчиков к Ардуино в этом случае стандартно. Понадобится Unified Sensor Driver — его обновлённая версия обеспечивает более высокую точность показаний; кроме того, позволяет работать с несколькими разными подключёнными датчиками давления одновременно. Необходимо также установить Adafrut_Sensor library.
Схема работы механического термостата.
Механический комнатный термостат — самый простой вариант комнатного термостата, в котором при помощи биметаллической пластины происходит замыкание или размыкание цепи. Такой термостат не требует подведения питания. Схема, по которой он работает, выглядит следующим образом:
Как видно из схемы, есть два способа подключения такого термостата;
- Через клемму NC — подключение для включения кондиционеров.
- Через клемму NO — подключение для газовых и других котлов.
На другой стороне необходимо подключить провода к клеммной коробке на плате управления котла. При этом необходимо сначала снять перемычку и закрепить концы проводов.винтами.
Такая схема подключения является наиболее простой и применяется на механических и электронных программируемых термостатах. В этой статье я расскажу еще об одной схеме.
Выводы
Подключение датчиков к Ардуино — это превращение алгоритмизированного робота, управляемого автоматически или в ручном режиме, в полноценную среду взаимодействия устройств и схем с окружающей средой. Не стоит забывать — это не панацея от всех бед. И не конечный высокотехнологичный продукт или конечная область применения. Ардуино — это комплекс аппаратных и программных решений, который поможет:
- освоить системы алгоритмизации начинающим инженерам;
- освоить базовые навыки конструирования;
- научиться программировать.
Вне зависимости от вашего уровня подготовки, ваших знаний, всегда можно подобрать для себя задачи по силам. Можно собрать простенькое решение автоматизации какой-либо несложной задачи без пайки вместе со школьником; а можно поставить глобальную задачу, где требуются помимо знаний и логики ещё и умение качественно паять и верно чертить и читать чертежи. А активные сообщества, форумы и базы знаний по системе Ардуино помогут решить практически любой вопрос.
Схема подключения беспроводного термостата.
В данный момент беспроводные термостаты получили широкое распространение и серьезно потеснили своих проводных собратьев. С ними проще работать, не нужно тянуть через весь дом провода от термостата до датчика. Достаточно просто настроить адрес датчика и установить его в месте с устойчивым приемом сигнала от термостата. Что касаемо схем подключения таких устройств, то их может быть две:
Схема соединения по разрыву цепи.
Схема ничем не отличается от схемы подключения механического термостата. Включение котла, насоса или сервопривода происходит по появлению тока в цепи.
Схема соединения по потенциалу (напряжению).
В данной схем при соединении цепи термостат передает на вход котла напряжение, которое включает котел, насос или сервопривод.
Принцип действия теплового датчика
Контролировать систему отопления можно разнообразными методами, среди которых:
- автоматические устройства для своевременной энергоподачи;
- блоки, следящие за безопасностью;
- смесительные узлы.
Для корректной работы всех этих групп необходимы датчики температур, подающие сигналы о функционировании приборов. Наблюдения за показаниями этих приборов позволяют вовремя выявить неисправности в системе и принять меры по исправлению.
Существует множество разновидностей приборов, используемых для снятия температуры. Они могут погружаться в теплоносители, использоваться внутри помещения или располагаться снаружи
Термодатчик может использоваться как отдельный прибор, например, для контроля за температурой комнаты, или быть неразрывной частью сложного устройства, например, отопительного котла.
В основу подобных устройств, применяющихся в автоматизированном управлении, положен принцип преобразования температурных показателей в электросигнал. Благодаря этому результаты измерения можно оперативно передавать по сети в виде цифрового кода, что гарантирует высокую скорость, чувствительность и точность замера.
В то же время различные приборы для измерения стадии нагрева могут иметь конструктивные особенности, влияющие на ряд параметров: работу в определенной среде, способ передачи, метод визуализации и другие.